Skip to main content
Log in

RANKL-induced osteoclastogenesis is suppressed by 4-O-methylhonokiol in bone marrow-derived macrophages

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Magnolol, honokiol, and obovatol are well known bioactive constituents of the bark of Magnolia officinalis and have been reported to have beneficial effects in various diseases. We recently isolated a novel active compound, 4-O-methylhonokiol (4-O-MH) from the ethanol extract of M. officinalis, which was previously reported to have pharmacological effects including anti-inflammatory, anti-oxidative, and anti-aging activities. Here, we examined the pharmacological properties of 4-O-MH on osteoblast (bone-forming cells) and osteoclast (bone-resorbing cells) differentiation, and its underlying signaling pathways in primary cultured pre-osteoblasts and bone marrow macrophages. Our results showed that 4-O-MH did not affect cell viability in pre-osteoblasts and did not influence osteoblast differentiation and mineralized nodule formation, as assessed by alkaline phosphatase activity and Alizarin red staining. However, 4-O-MH significantly inhibited TRAP-positive multinuclear osteoclasts and F-actin ring formation during Receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis without cytotoxicity. In addition, 4-O-MH suppressed RANKL-induced critical factors (c-Fos, NF-ATc1, TRAP, and ITB3) for osteoclast differentiation and function. Furthermore, RANKL-mediated signaling, including ERK1/2, AKT, and NF-kB pathways was attenuated by 4-O-MH. Taken together, 4-O-MH has an inhibitory role in RANKL-mediated osteoclastogenesis but not osteoblast differentiation, and our findings also suggest that 4-O-MH is a potential therapeutic agent for bone-destructive diseases such as osteoporosis, alveolar bone resorption, and osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  • Cairoli E, Zhukouskaya VV, Eller-Vainicher C, Chiodini I (2015) Perspectives on osteoporosis therapies. J Endocrinol Invest 38:303–311

    Article  CAS  PubMed  Google Scholar 

  • Chang EJ, Ha J, Oerlemans F, Lee YJ, Lee SW, Ryu J, Kim HJ, Lee Y, Kim HM, Choi JY, Kim JY, Shin CS, Pak YK, Tanaka S, Wieringa B, Lee ZH, Kim HH (2008) Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption. Nat Med 14:966–972

    Article  CAS  PubMed  Google Scholar 

  • Endo I, Matsumoto T (2012) Update and perspectives of anabolic therapies for osteoporosis. Clin Calcium 22:327–333

    CAS  PubMed  Google Scholar 

  • Filvaroff E, Erlebacher A, Ye J, Gitelman SE, Lotz J, Heillman M, Derynck R (1999) Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126:4267–4279

    CAS  PubMed  Google Scholar 

  • Jung YY, Lee YJ, Choi DY, Hong JT (2014) Amelioration of cognitive dysfunction in APP/PS1 double transgenic mice by long-term treatment of 4-O-methylhonokiol. Biomol Ther (Seoul) 22:232–238

    Article  CAS  Google Scholar 

  • Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am 34:1015–1030

    Article  CAS  PubMed  Google Scholar 

  • Kim MB, Song Y, Hwang JK (2014) Kirenol stimulates osteoblast differentiation through activation of the BMP and Wnt/beta-catenin signaling pathways in MC3T3-E1 cells. Fitoterapia 98:59–65

    Article  CAS  PubMed  Google Scholar 

  • Kwak HB, Lee BK, Oh J, Yeon JT, Choi SW, Cho HJ, Lee MS, Kim JJ, Bae JM, Kim SH, Kim HS (2010) Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression. Bone 46:724–731

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Jung EY, Bae SH, Kwon KH, Kim JM, Suh HJ (2011a) Stimulation of osteoblastic differentiation and mineralization in MC3T3-E1 cells by yeast hydrolysate. Phytother Res 25:716–723

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Choi IS, Park MH, Lee YM, Song JK, Kim YH, Kim KH, Hwang DY, Jeong JH, Yun YP, Oh KW, Jung JK, Han SB, Hong JT (2011b) 4-O-methylhonokiol attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway. Free Radic Biol Med 50:66–77

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT (2011c) Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 130:157–176

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Choi DY, Choi IS, Kim KH, Kim YH, Kim HM, Lee K, Cho WG, Jung JK, Han SB, Han JY, Nam SY, Yun YW, Jeong JH, Oh KW, Hong JT (2012) Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflammation 9:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marie PJ, Kassem M (2011) Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol 165:1–10

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279:26475–26480

    Article  CAS  PubMed  Google Scholar 

  • Monje P, Hernandez-Losa J, Lyons RJ, Castellone MD, Gutkind JS (2005) Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J Biol Chem 280:35081–35084

    Article  CAS  PubMed  Google Scholar 

  • Oh JH, Kang LL, Ban JO, Kim YH, Kim KH, Han SB, Hong JT (2009) Anti-inflammatory effect of 4-O-methylhonokiol, compound isolated from Magnolia officinalis through inhibition of NF-kappaB. Chem Biol Interact 180:506–514

    Article  CAS  PubMed  Google Scholar 

  • Oh JH, Ban JO, Cho MC, Jo M, Jung JK, Ahn B, Yoon DY, Han SB, Hong JT (2012) 4-O-methylhonokiol inhibits colon tumor growth via p21-mediated suppression of NF-kappaB activity. J Nutr Biochem 23:706–715

    Article  CAS  PubMed  Google Scholar 

  • Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators—mechanisms of action and application to clinical practice. N Engl J Med 348:618–629

    Article  CAS  PubMed  Google Scholar 

  • Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184

    Article  CAS  PubMed  Google Scholar 

  • Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5:667–676

    Article  CAS  PubMed  Google Scholar 

  • Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    Article  CAS  PubMed  Google Scholar 

  • Vondracek SF, Minne P, McDermott MT (2008) Clinical challenges in the management of osteoporosis. Clin Interv Aging 3:315–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl) 74:589–607

    Article  CAS  Google Scholar 

  • Yun HM, Kim S, Kim HJ, Kostenis E, Kim JI, Seong JY, Baik JH, Rhim H (2007) The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn. J Biol Chem 282:5496–5505

    Article  CAS  PubMed  Google Scholar 

  • Yun HM, Ban JO, Park KR, Lee CK, Jeong HS, Han SB, Hong JT (2014) Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther 142:183–195

    Article  CAS  PubMed  Google Scholar 

  • Yun HM, Park KR, Quang TH, Oh H, Hong JT, Kim YC, Kim EC (2015) 2,4,5-Trimethoxyldalbergiquinol promotes osteoblastic differentiation and mineralization via the BMP and Wnt/beta-catenin pathway. Cell Death Dis 6:e1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun HM, Park KR, Hong JT, Kim EC (2016) Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor. Sci Rep 6:30985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanotti S, Canalis E (2015) Activation of Nfatc2 in Osteoblasts Causes Osteopenia. J Cell Physiol 230:1689–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Kyung Hee University in 2016 (KHU-20160546) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (MRC, 20080062275; 2015R1D1A1A01059240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Mun Yun or Jin Tae Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, KR., Kim, JY., Kim, EC. et al. RANKL-induced osteoclastogenesis is suppressed by 4-O-methylhonokiol in bone marrow-derived macrophages. Arch. Pharm. Res. 40, 933–942 (2017). https://doi.org/10.1007/s12272-017-0932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0932-z

Keywords

Navigation