Skip to main content
Log in

Regulation of cardiac Ca2+ and ion channels by shear mechanotransduction

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Cardiac contraction is controlled by a Ca2+ signaling sequence that includes L-type Ca2+ current-gated opening of Ca2+ release channels (ryanodine receptors) in the sarcoplasmic reticulum (SR). Local Ca2+ signaling in the atrium differs from that in the ventricle because atrial myocytes lack transverse tubules and have more abundant corbular SR. Myocardium is subjected to a variety of forces with each contraction, such as stretch, shear stress, and afterload, and adapts to those mechanical stresses. These mechanical stimuli increase in heart failure, hypertension, and valvular heart diseases that are clinically implicated in atrial fibrillation and stroke. In the present review, we describe distinct responses of atrial and ventricular myocytes to shear stress and compare them with other mechanical responses in the context of local and global Ca2+ signaling and ion channel regulation. Recent evidence suggests that shear mechanotransduction in cardiac myocytes involves activation of gap junction hemichannels, purinergic signaling, and generation of mitochondrial reactive oxygen species. Significant alterations in Ca2+ signaling and ionic currents by shear stress may be implicated in the pathogenesis of cardiac arrhythmia and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi-Akahane S, Cleemann L, Morad M (1996) Cross-signaling between L-type Ca2+ channels and ryanodine receptors in rat ventricular myocytes. J Gen Physiol 108:435–454

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327:79–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen DG, Nichols CG, Smith GL (1988) The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J Physiol 406:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC, Cingolani HE (1999) Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res 85:716–722

    Article  CAS  PubMed  Google Scholar 

  • Ayettey AS, Navaratnam V (1978) The T-tubule system in the specialized and general myocardium of the rat. J Anat 127:125–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bae H, Lee D, Kim YW, Choi J, Lee HJ, Kim SW, Kim T, Noh YH, Ko JH, Bang H, Lim I (2016) Effects of hydrogen peroxide on voltage-dependent K+ currents in human cardiac fibroblasts through protein kinase pathways. Korean J Physiol Pharmacol 20(3):315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao L, Sachs F, Dahl G (2004) Connexins are mechanosensitive. Am J Physiol Cell Physiol 287:C1389–C1395

    Article  CAS  PubMed  Google Scholar 

  • Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA (2005) Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280:15912–15920

    Article  CAS  PubMed  Google Scholar 

  • Bassani JWM, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476:279–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K, Kovacs G, Okada Y (2003) Macular densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci USA 100:4322–4327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmonte S, Morad M (2008) ‘Pressure-flow’-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria. J Physiol 586:1379–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuckelmann DJ, Wier WG (1988) Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol 405:233–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beyder A, Strege PR, Reyes S, Bernard CE, Terzic A, Makielski J, Ackerman MJ, Farrugia G (2012) Ranolazine decreases mechanosensitivity of the voltage-gated sodium ion channel Nav1.5. Circulation 125:2698–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodin P, Burnstock G (2001) Evidence that release of adenosine trisphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38:900–908

    Article  CAS  PubMed  Google Scholar 

  • Boycott HE, Barbier CSM, Eichel CA, Costa KD, Martins RP, Louault F, Dilanian G, Coulombe A, Hatem SN, Balse E (2013) Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci USA 110(41):E3955–E3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannell MB, Cheng H, Lederer WJ (1994) Spatial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Biophys J 67:1942–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carl SL, Felix K, Caswell AH, Brandt NR, Ball WJ, Vaghy PL, Meissner G, Ferguson DG (1995) Immunoloalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol 129:673–682

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Article  CAS  PubMed  Google Scholar 

  • Cingolani HE, Alvarez BV, Ennis IL, Camilion de Hurtado MC (1998) Stretch-induced alkalinization of feline papillary muscle: an autocrine–paracrine system. Circ Res 83:775–780

    Article  CAS  PubMed  Google Scholar 

  • Cleemann L, Morad M (1991) Role of Ca2+ channel in cardiac excitation-contraction coupling in the rat: evidence from Ca2+ transients and contraction. J Physiol 432:283–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleemann L, Wang W, Morad M (1998) Two-dimensional confocal images of organization, density, and gating of focal Ca2+ release sites in rat cardiac myocytes. Proc Natl Acad Sci USA 95:10984–10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clerk A, Sugden PH (1999) Activation of protein kinase cascades on the heart by hypertrophic G protein-coupled receptor agonists. Am J Cardiol 83:64H–69H

    Article  CAS  PubMed  Google Scholar 

  • Conwell JA, Cocalis MW, Erickson LC (1993) EAT to the beat: “ectopic” atrial tachycardia caused by catheter whip. Lancet 342(8873):740

    Article  CAS  PubMed  Google Scholar 

  • Costa KD, Takayama Y, McCuloch AD, Covell JW (1999) Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am J Physiol 276:H595–H607

    CAS  PubMed  Google Scholar 

  • Cotrina ML, Lin JHC, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CCG, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735–15740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538

    Article  CAS  PubMed  Google Scholar 

  • Earley S, Straub SV, Brayden JE (2007) Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 292:H2613–H2622

    Article  CAS  PubMed  Google Scholar 

  • Forssmann WG, Girardier L (1970) A study of the T system in rat heart. J Cell Biol 44:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassanov N, Brandt MC, Michels G, Lindner M, Er F, Hoppe UC (2006) Angiotensin II-induced changes of calcium sparks and ionic currents in human atrial myocytes: potential role for early remodeling in atrial fibrillation. Cell Calcium 39:175–186

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith I, Kumar P, Carter P, Blann AD, Patel RL, Lip GYH (2000) Atrial endocardial changes in mitral valve disease: a scanning electron microscopy study. Am Heart J 140:777–784

    Article  CAS  PubMed  Google Scholar 

  • Guinamard R, Rahmati M, Lenfant J, Bois P (2002) Characterization of a Ca2+-activated nonselective cation channel during dedifferentiation of cultured rat ventricular cardiomyocytes. J Memb Biol 188:127–135

    Article  CAS  Google Scholar 

  • Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P (2004) Functional characterization of a Ca2+-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haendeler J, Ishida M, Hunyady L, Berk BC (2000) The third cytoplasmic loop of the angiotensin II type 1 receptor exerts differential effects on extracellular signal-regulated kinase (ERK1/ERK2) and apoptosis via Ras- and Rap1-dependent pathways. Circ Res 86:729–736

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara N, Masuda H, Shoda M, Irisawa H (1992) Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol 456:285–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatem SN, Bénardeau A, Rücker-Martin C, Marty I, de Chamisso P, Villaz M, Mercadier JJ (1997) Different compartments of sarcoplasmic reticulum participate in the excitation-contraction coupling process in human atrial myocytes. Circ Res 80(3):345–353

    Article  CAS  PubMed  Google Scholar 

  • Helmke BP, Rosen AB, Davies PF (2003) Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys J 84:2691–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hof T, Simard C, Rouet R, Sallé L, Guinamard R (2013) Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm. Heart Rhythm 10:1683–1689

    Article  PubMed  Google Scholar 

  • Hongo K, White E, Le Guennec JY, Orchard CH (1996) Changes in [Ca2+]i. [Na+]i, and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. J Physiol 491:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RAB, Garny A, Morphew MK, Hoenger A, Lederer WJ, Kohl P (2009) Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res 104:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Shaw JA, Onofiok E, Erickson JR, Chen YJ, Horvath B, Shimkunas R, Shimkunas R, Xiao W, Li Y, Pan T, Chan J, Banyasz T, Tardiff JC, Chiamvimonvat N, Bers DM, Lam KS, Chen-Izu Y (2014) Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci Signal 7(317):ra27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    Article  CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Bohm J, Theres H, Günther J, Scholz H (2003) Characteristics of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflügers Arch Eu J Physiol 446:339–346

    Article  CAS  Google Scholar 

  • Kim JC, Woo SH (2013) Role of Na+-H+ exchange in the modulation of L-type Ca2+ current during fluid pressure in rat ventricular myocytes. Biochem Biophys Res Commun 431:239–245

    Article  CAS  PubMed  Google Scholar 

  • Kim JC, Woo SH (2015) Shear stress induces a longitudinal Ca2+ wave via autocrine activation of P2Y1 purinergic signaling in rat atrial myocytes. J Physiol 593:5091–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JC, Wang J, Son MJ, Woo SH (2017) Shear stress enhances Ca2+ sparks through Nox2-dependent mitochondrial reactive oxygen species generation in rat ventricular myocytes. Biochim Biophys Acta 6:1121–1131

    Article  CAS  Google Scholar 

  • Kim JC, Son MJ, Woo SH (2011) Suppression of L-type Ca2+ current by fluid pressure in rat ventricular myocytes: possible role of Cl–OH- exchange. Biochem Biophys Res Commun 413:17–23

    Article  CAS  PubMed  Google Scholar 

  • Kirk MM, Izu LT, Chen-Izu Y, McCulle SL, Wier WG, Balke CW, Shorofsky SR (2003) Role of the transverse-axial tubule system in generating calcium sparks and calcium transients in rat atrial myocytes. J Physiol 547(Pt 2):441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kockskämper J, Sheehan KA, Bare DJ, Lipsius SL, Mignery GA, Blatter LA (2001) Activation and propagation of Ca2+ release during excitation-contraction coupling in atrial myocytes. Biophys J 81(5):2590–2605

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong CR, Bursac N, Tung L (2005) Mechanical excitation by fluid jets in monolayers of cultured cardiac myocytes. J Appl Physiol 98:2328–2336

    Article  PubMed  Google Scholar 

  • Kurihara S, Komukai K (1995) Tension-dependent changes of the intracellular Ca2+trasients in ferret ventricular muscles. J Physiol 489:617–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakatta EG (1986) Length modulation of muscle performance: The Frank-Starling law of the heart. In: Fozzard H, Haber E, Jennings E, Katz A, Morgan H (eds) The Heart and Cardiovascular System. Raven, New York, pp 819–843

  • Lakatta EG (1993) Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 73:413–467

    CAS  PubMed  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim JC, Li Y, Son MJ, Woo SH (2008) Fluid pressure modulates L-type Ca2+ channel via enhancement of Ca2+-induced Ca2+ release in rat ventricular myocytes. Am J Physiol Cell Physiol 294:C966–C976

    Article  CAS  PubMed  Google Scholar 

  • LeGrice IJ, Takayama Y, Covell JW (1995) Transverse shear along myocardiac cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 77:182–193

    Article  CAS  PubMed  Google Scholar 

  • LeGuennec J-Y, White E, Gannier F, Argibay JA, Garnier D (1991) Stretch-induced increase of resting intracellular calcium concentration on single guinea-pig ventricular myocytes. Exp Physiol 76:975–978

    Article  CAS  Google Scholar 

  • Li X, Zima AV, Sheikh F, Blatter LA, Chen J (2005) Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res 96(12):1274–1281

    Article  CAS  PubMed  Google Scholar 

  • Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, Bootman MD (2000) Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 10:939–942

    Article  CAS  PubMed  Google Scholar 

  • Luers C, Fialka F, Elgner A, Zhu D, Kockskämper J, von Lewinski D, Pieske B (2005) Stretch-dependent modulation of [Na +]i, [Ca2 +]i, and pHi in rabbit myocardium—a mechanism for the slow force response. Cardiovasc Res 68:454–463

    Article  CAS  PubMed  Google Scholar 

  • Lukyanenko V, Chikando A, Lederer WJ (2009) Mitochondria in cardiomyocytes Ca2+ signaling. Int J Biochem Cell Biol 41:1957–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie L, Bootman MD, Berridge MJ, Lipp P (2001) Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J Physiol 530(Pt 3):417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie L, Bootman MD, Laine M, Berridge MJ, Thuring J, Holmes A, Li WH, Lipp P (2002) The role of inositol 1,4,5-trisphosphate receptors in Ca2+ signalling and the generation of arrhythmias in rat atrial myocytes. J Physiol 541:395–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londoño JE, Uhl S, Flockerzi V, Voets T, Freichel M, Nilius B, Herijgers P, Vennekens R (2014) Increased & #x03B2;-adrenergic inotropy in ventricular myocardium from Trpm4−/− mice. Circ Res 114:283–294

    Article  CAS  PubMed  Google Scholar 

  • Meens MJ, Pfenniger A, Kwak BR, Delmar M (2013) Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res 99:304–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Näbauer M, Callewaert G, Cleemann L, Morad M (1989) Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244:800–803

    Article  PubMed  Google Scholar 

  • Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    Article  CAS  PubMed  Google Scholar 

  • Nazir SA, Lab MJ (1996) Mechanoelectric feedback and atrial arrhythmias. Cardiovasc Res 32:52–61

    Article  CAS  PubMed  Google Scholar 

  • Negretti N, O’Neill SC, Eisner DA (1993) The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res 27:1826–1830

    Article  CAS  PubMed  Google Scholar 

  • Nichols CG (1985) The influence of diastolic length on the contractility of isolated cat papillary muscle. J Physiol 361:269–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niggli E, Lederer WJ (1990) Voltage-independent calcium release in heart muscle. Science 250:565–568

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278(33):30813–30820

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280(8):6423–6433

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Sato Y, Uemura A, Narita Y, Tozaki-Saitoh H, Nakaya M, Ide T, Suzuki K, Inoue K, Nagao T, Kurose H (2008) P2Y6 receptor-Gα12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO J 27:3104–3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi S, Sasano T, Tateishi Y, Tamura N, Isobe M, Furukawa T (2012) Stretch of atrial myocytes stimulates recruitment of macrophages via ATP released through gap-junction channels. J Pharmacol Sci 120:296–304

    Article  CAS  PubMed  Google Scholar 

  • Olesen SP, Clapham DE, Davies PF (1988) Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170

    Article  CAS  PubMed  Google Scholar 

  • Parker I, Zang WJ, Wier WG (1996) Ca2+ sparks involving multiple Ca2+ release sites along Z-lines in rat heart cells. J Physiol 497:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmley WW, Chuck L (1973) Length-dependent changes in myocardial contractile state. Am J Physiol 224:1195–1199

    CAS  PubMed  Google Scholar 

  • Perez NG, de Hurtado MC, Cingolani HE (2001) Reverse mode of the Na+–Ca2+ exchange after myocardial stretch: underlying mechanism of the slow force response. Circ Res 88:376–382

    Article  CAS  PubMed  Google Scholar 

  • Petroff MGV, Kim SH, Pepe S, Dessy C, Marbán E, Balligand JL, Sollott SJ (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873

    Article  CAS  PubMed  Google Scholar 

  • Prosser BL, Ward CW, Lederer WJ (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333:1440–1445

    Article  CAS  PubMed  Google Scholar 

  • Rosa AO, Yamaguchi N, Morad M (2013) Mechanical regulation of native and the recombinant calcium channel. Cell Calcium 53:264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    Article  CAS  PubMed  Google Scholar 

  • Saeki Y, Kurihara S, Hongo K, Tanaka E (1993) Alterations in intracellular calcium and tension of activated ferret papillary muscle in response to step length changes. J Physiol 463:291–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saffitz JE (2009) Acquired valvular and endocardial diseases. In: Rubin E, Reisner HM (eds) Essentials of Rubin’s Pathology, 5th edn. Lippincott Williams & Wilkins, Inc., Baltimore, pp 232–237

    Google Scholar 

  • Sánchez G, Escobar M, Pedrozo Z, Macho P, Domenech R, Härtel S, Hidalgo C, Donoso P (2008) Exercise and tachycardia increase NADPH oxidase and ryanodine receptor-2 activity: possible role in cardioprotection. Cardiovasc Res 77:380–386

    Article  PubMed  CAS  Google Scholar 

  • Sato R, Koumi S (1998) Characterization of the stretch-activated chloride channel in isolated human atrial myocytes. J Membrane Biol 163:67–76

    Article  CAS  Google Scholar 

  • Saward L, Zahradka P (1997) Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res 81:249–257

    Article  CAS  PubMed  Google Scholar 

  • Schneider SW, Egan ME, Jena BP, Guggino WB, Oberleithner H, Geibel JP (1999) Continuous detection of extracellular ATP on living cells by using atomic force microscopy. Proc Natl Acad Sci USA 96:12180–12185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shacklock PS, Wier WG, Balke CW (1995) Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J Physiol 487:601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan KA, Zima AV, Blatter LA (2006) Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes. J Physiol 572:799–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simard C, Sallé L, Rouet R, Guinamard R (2012) Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br J Pharmacol 165:2354–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simard C, Hof T, Keddache Z, Launay P, Guinamard R (2013) The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol 59:11–19

    Article  CAS  PubMed  Google Scholar 

  • Soldatov N (2003) Ca2+ channel moving tail: link between Ca2+-induced inactivation and Ca2+ signal transduction. Trends Pharmacol Sci 24(4):167–171

    Article  CAS  PubMed  Google Scholar 

  • Sommer JR, Waugh RA (1976) The ultrastructure of the mammalian cardiac muscle cell–with special emphasis on the tubular membrane systems. Am J Pathol 82(1):192–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son MJ, Kim JC, Kim SW, Chidipi B, Muniyandi J, Singh TD, So I, Subedi KP, Woo SH (2016) Shear stress activates monovalent cation channel transient receptor potential melastatin subfamily 4 in rat atrial myocytes via type 2 inositol 1,4,5-trisphosphate receptors and Ca2+ release. J Physiol 594:2985–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suadicani SO, Vink MJ, Spray DC (2000) Slow intercellular Ca2+ signaling in wild-type and Cx43-null neonatal mouse cardiac myocytes. Am J Physiol Heart Circ Physiol 279(6):H3076–H3088

    CAS  PubMed  Google Scholar 

  • Takahashi T, Taniguchi T, Konishi H, Kikkawa U, Ishikawa Y, Yokoyama M (1999) Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells. Am J Physiol 276:H1927–H1934

    CAS  PubMed  Google Scholar 

  • Tavi P, Han C, Weckström M (1998) Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes. Circ Res 83:1165–1177

    Article  CAS  PubMed  Google Scholar 

  • Tavi P, Han C, Weckström M (1999) Intracellular acidosis modulates the stretch-induced changes in E-C coupling of the rat atrium. Acta Physiol Scand 167:203–213

    Article  CAS  PubMed  Google Scholar 

  • Terentyev D, Györke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, de Blanco EC, Khanna S, Sen CK, Cardounel AJ, Carnes CA, Györke S (2008) Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103:1466–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzzaman M, Honjo H, Takagishi Y, Emdad L, Magee AI, Severs NJ, Kodama I (2000) Remodeling of gap junctional coupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circ Res 86(8):871–878

    Article  CAS  PubMed  Google Scholar 

  • von Lewinski D, Stumme B, Maier LS, Luers C, Bers DM, Pieske B (2003) Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovasc Res 57:1052–1061

    Article  CAS  Google Scholar 

  • Wier WG, Egan TM, López-López JR, Balke CW (1994) Local control of excitation-contraction coupling in rat heart cells. J Physiol 474(3):463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SH, Cleemann L, Morad M (2002) Ca2+-current-gated focal and local Ca2+ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J Physiol 543:439–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SH, Cleemann L, Morad M (2003) Spatiotemporal characteristics of junctional and nonjunctional focal Ca2+ release in rat atrial myocytes. Circ Res 92:e1–e11

    Article  CAS  PubMed  Google Scholar 

  • Woo SH, Cleemann L, Morad M (2005) Diversity of atrial local Ca2+ signalling: evidence from 2-Dconfocal imaging in Ca2+-buffered rat atrial myocytes. J Physiol 567:905–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SH, Risius T, Morad M (2007) Modulation of local Ca2+ release sites by rapid fluid puffing in rat atrial myocytes. Cell Calcium 41:397–403

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Korenaga R, Kamiya A, Ando J (2000) Fluid shear stress activates Ca2+ influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87:385–391

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Sokabe T, Ohura N, Nakatsuka H, Kamiya A, Ando J (2003) Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 285:H793–H803

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Furuya K, Nakamura M, Kobatake E, Sokabe M, Ando J (2011) Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J Cell Sci 124:3477–3483

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y (1996) Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271:3221–3228

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Nagai R, Aikawa R, Uozumi H, Yazaki Y (1998) Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res 82:430–437

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Youm JB, Sung HK, Lee SH, Ryu SY, Ho WK, Earm YE (2000) Stretch-activated and background non-selective cation channels in rat atrial myocytes. J Physiol 523:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Research Foundation of Korea (NRF) Grants funded by the Korea Government (MEST) (2015R1A2A2A01002625) and the Chungnam National University research Grant in the year 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Hee Woo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JC., Son, MJ., Wang, J. et al. Regulation of cardiac Ca2+ and ion channels by shear mechanotransduction. Arch. Pharm. Res. 40, 783–795 (2017). https://doi.org/10.1007/s12272-017-0929-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0929-7

Keywords

Navigation