Skip to main content
Log in

TEOA, a triterpenoid from Actinidia eriantha, induces autophagy in SW620 cells via endoplasmic reticulum stress and ROS-dependent mitophagy

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

2α,3α,24-Thrihydroxyurs-12-en-28-oicacid (TEOA), a pentacyclic triterpenoid, isolated from the roots of Actinidia eriantha, exhibits significant cytotoxicity against SW620, BGC-823, HepG-2, A549 and PC-3 cancer cells. In this study, we investigated the underlying molecular mechanism of the anticancer activity of TEOA in SW620 cells. We demonstrated that TEOA induced apoptosis through cleavage of caspase-9 and PARP in SW620 cells. In addition, evidence of TEOA-mediated autophagy included the induction of autophagolysosomes and activation of autophagic markers LC-3B and p62. Further analysis illustrated that TEOA promoted the phosphorylation of PERK and elF2α, followed by up-regulation of the downstream protein CHOP, suggesting the involvement of PERK/eIF2α/CHOP pathway and ER stress in TEOA-induced autophagy in SW620 cells. Meanwhile, TEOA-mediated PINK1, Parkin, ubiquitin and p62 activation revealed that TEOA induced specific autophagy-mitophagy in SW620 cells. Additionally, an antioxidant NAC attenuated the TEOA-induced mitophagy, indicating that TEOA triggers mitophagy via a ROS-dependent pathway. Collectively, our findings revealed a novel cellular mechanism of TEOA in the colon cancer cell line SW620, thus providing a molecular basis for developing TEOA into an anti-tumor candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bai X, Qiu A (2006) The liver-protective effect of the extracts from the Actinidia deliciosa Root. J Food Sci Biotechnol 6:024

    Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

    Article  CAS  PubMed  Google Scholar 

  • Brewer JW, Diehl JA (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 97(23):12625–12630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279(19):20108–20117

    Article  CAS  PubMed  Google Scholar 

  • Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284(20):13843–13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X, Stolz DB, Shao ZM, Yin XM (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282(7):4702–4710

    Article  CAS  PubMed  Google Scholar 

  • Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GW, Yin XM (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285(36):27879–27890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durcan TM, Fon EA (2015) The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29(10):989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu WW, Tan CH, Lu LL, Meng XX, Luo HF, Zhu DY (2010) Chemical constituents from the root of Actinidia deliciosa. Chin J Nat Med 8(4):247–249

    Article  CAS  Google Scholar 

  • Garcia M, Meurs E, Esteban M (2007) The dsRNA protein kinase PKR: virus and cell control. Biochimie 89(6):799–811

    Article  CAS  PubMed  Google Scholar 

  • Gegg ME, Schapira AH (2011) PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: implications for Parkinson disease pathogenesis. Autophagy 7(2):243–245

    Article  PubMed  PubMed Central  Google Scholar 

  • Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000a) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000b) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904

    Article  CAS  PubMed  Google Scholar 

  • Høyer-Hansen M, Jäättelä M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576–1582

    Article  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  • Joselin AP, Hewitt SJ, Callaghan SM, Kim RH, Chung Y-H, Mak TW, Shen J, Slack RS, Park DS (2012) ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Hum Mol Genet 21(22):4888–4903. doi:10.1093/hmg/dds325

    Article  CAS  PubMed  Google Scholar 

  • Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, Ron D (2003) Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J Cell Biol 163(4):767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanki T, Klionsky DJ (2008) Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 283(47):32386–32393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  CAS  PubMed  Google Scholar 

  • Koh H, Chung J (2012) PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity. Mol Cell 34(1):7–13

    Article  CAS  Google Scholar 

  • Kojima H, Ogura H (1989) Configurational studies on hydroxy groups at C-2, 3 and 23 or 24 of oleanene and ursene-type triterpenes by NMR spectroscopy. Phytochemistry 28(6):1703–1710

    Article  CAS  Google Scholar 

  • Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman R, Kominami E, Momoi T (2007) ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Xu D (2007) Study on the chemical structure from the roots of Actinidia deliciosa. J Chin Med Mater 30(2):166–168

    CAS  Google Scholar 

  • Lee AS (1987) Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 12:20–23

    Article  CAS  Google Scholar 

  • Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26(8):504–510

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189(4):671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Wang X, Zhen H, Zhong Z, Zhang W, Zhang W, Li W (2007) Study on anti-tumor effect of extractions from roots of Actinidia deliciosa. J Chin Med Mater 30(10):1279–1282

    Google Scholar 

  • Lin S, Yu P, Zhu S, Wu X, Yu B (1987) Preliminary study on anticancer effect and affecting mouse immune function of crude extracts from the Actinintia eriantha Benth root. J Fujian Norm Univ (Nat Sci Ed) 3(2):108–110

    Google Scholar 

  • Lu PD, Jousse C, Marciniak SJ, Zhang Y, Novoa I, Scheuner D, Kaufman RJ, Ron D, Harding HP (2004) Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J 23(1):169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugea A, Tischler D, Nguyen J, Gong J, Gukovsky I, French SW, Gorelick FS, Pandol SJ (2011) Adaptive unfolded protein response attenuates alcohol-induced pancreatic damage. Gastroenterology 140(3):987–997

    Article  CAS  PubMed  Google Scholar 

  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Y-s Sou, Saiki S, Kawajiri S, Sato F (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(2):211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298

    Article  PubMed  PubMed Central  Google Scholar 

  • Obrand DI, Gordon PH (1997) Incidence and patterns of recurrence following curative resection for colorectal carcinoma. Dis Colon Rectum 40(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Ys Sou, Kimura M, Sato S, Hattori N, Komatsu M (2010) p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15(8):887–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara J, Kaiya T (1983) Terpenoids of Rhododendron japonicum. Phytochemistry 22(11):2547–2552

    Article  CAS  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454(7201):232–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. BBA Mol Cell Res 1833(12):3460–3470

    CAS  Google Scholar 

  • Satoh H (2014) Pharmacological effectiveness of the active phytochemicals contained in foods and herbs. J Intercult Ethnopharmacol 3(4):196

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7(6):1165–1176

    Article  CAS  PubMed  Google Scholar 

  • Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104(49):19500–19505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallóczy Z, Jiang W, Virgin HW, Leib DA, Scheuner D, Kaufman RJ, Eskelinen E-L, Levine B (2002) Regulation of starvation-and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc Natl Acad Sci USA 99(1):190–195

    Article  PubMed  Google Scholar 

  • Tolkovsky AM (2009) Mitophagy. BBA Mol Cell Res 1793(9):1508–1515

    CAS  Google Scholar 

  • Verfaillie T, Rubio N, Garg A, Bultynck G, Rizzuto R, Decuypere J, Piette J, Linehan C, Gupta S, Samali A (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19(11):1880–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK (2012) ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy 8(10):1462–1476

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16(7):939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen LX, Ouyang L, Cheng Y, Liu B (2012) Plant natural compounds: targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif 45(5):466–476

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Zhang F, Zhen H, Zhang W, Wu H, Wei H (2003) Experimental study on the antitumor effects of extracts from roots of Acitinidia delicilsa in carcinoma cell lines. Chin Arch Tradit Chin Med 22(9):1705–1707

    Google Scholar 

  • Zhou X, Liu Y, Tang L, Zhang P, Wu J (2010) Chemical constituents from the roots of Actinidia chinensis. Chem Nat Compd 46(2):308–309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 81473182), the Jiangsu Provincial Natural Science Foundation of China (Grant No. BK20161269) and the Jiangsu Technology Support Program (Grant No. BE2014654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkui Tian.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Gao, C., Li, R. et al. TEOA, a triterpenoid from Actinidia eriantha, induces autophagy in SW620 cells via endoplasmic reticulum stress and ROS-dependent mitophagy. Arch. Pharm. Res. 40, 579–591 (2017). https://doi.org/10.1007/s12272-017-0899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0899-9

Keywords

Navigation