Advertisement

Archives of Pharmacal Research

, Volume 40, Issue 11, pp 1271–1277 | Cite as

Diacylglycerol acyltransferase 1 (DGAT1) inhibition by furofuran lignans from stems of Acanthopanax senticosus

  • Ban-Ban Li
  • Jia-Lin Li
  • Na Li
  • Shi-Zhou Qi
  • Hyun-Sun Lee
  • Le Zhang
  • Shan-Shan Xing
  • Zhen-Dong Tuo
  • Long Cui
Research Article
  • 246 Downloads

Abstract

Two new furofuran lignans were isolated from the stems of Acanthopanax senticosus, along with seven known compounds. Their structures were all determined by spectroscopic analyses and chemical methods. All the isolates were evaluated for in vitro inhibitory activity against DGAT1 and DGAT2. Compounds 1 and 2 were found to exhibit selective inhibitory activity on DGAT1 with IC50 values 89.5 ± 1.5 and 57.5 ± 1.3 µM, respectively.

Keywords

Acanthopanax senticosus Araliaceae DGAT Furofuran lignans 

Notes

Acknowledgments

This research was supported by a Grant from KRIBB Research Initiative Program and Technological Developing Scheme of Jilin Province of People’s Republic of China (20150101225JC).

Supplementary material

12272_2016_842_MOESM1_ESM.doc (618 kb)
The NMR spectral data of compound 1 and 2 are available as Supporting Information.Supplementary material 1 (DOC 618 kb)

References

  1. Achenbach H, Stöcker M, Constenla MA (1988) Flavonoid and other constituents of Bauhinia manca. Phytochemistry 27:1835–1841CrossRefGoogle Scholar
  2. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV (1998) Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. J Natl Acad Sci 95:13018–13023CrossRefGoogle Scholar
  3. Chung MY, Ko JS, Rho MC, Ryu SY, Jeune KH, Kim K, Lee HS, Kim YK (2004) In vitro inhibition of diacylglycerol acyltransferase by prenylflavonoids from Sophora flavescens. Planta Med 70:258–260CrossRefPubMedGoogle Scholar
  4. Cui L, Kim MO, Seo JH, Kim IS, Kim NY, Lee SH, Park J, Kim J, Lee HS (2012) Abietane diterpenoids of Rosmarinus officinalis and their diacylglycerol acyltransferase-inhibitory activity. Food Chem 132:1775–1780CrossRefGoogle Scholar
  5. DeVita RJ, Shirly P (2013) Current status of the research and development of diacylglycerol O-acyltransferase 1 (DGAT1) inhibitors. J Med Chem 56:9820–9825CrossRefPubMedGoogle Scholar
  6. Deyama T, Nishibe S, Nakazawa Y (2012) Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol Sin 22:1057–1070Google Scholar
  7. Houghton PJ (1985) Lignans and neolignans from Buddleja davidii. Phytochemistry 24:819–826CrossRefGoogle Scholar
  8. Jin XQ, Xu DM, Xu YJ (1993) Structure determination of zhebeiresinol. Yao Xue Xue Bao 3:212–215Google Scholar
  9. Katayama Y, Fukuzumi T (1989) Formation of new acetal linkages in the metabolism of syringaresinol structure of lignin by Coriolus versicolor. FEMS Microbiol Lett 58:247–254CrossRefGoogle Scholar
  10. Kim SB, Ahn B, Kim M, Ji HJ, Shin SK, Hong IP, Kim CY, Hwang BY, Lee MK (2014) Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6 J mice. J Ethnopharmacol 151:478–484CrossRefPubMedGoogle Scholar
  11. Lai SMF, Orchison JJA, Whiting DA (1989) A new synthetic approach to the rotenoid ring system. Tetrahedron 45:5895–5906CrossRefGoogle Scholar
  12. Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276:38862–38869CrossRefPubMedGoogle Scholar
  13. Li YC, Kuo YH (2001) Four new compounds, ficusal, ficusesquilignan A, B, and ficusolide diacetate from the heartwood of Ficus microcarpa. ChemInform 32:1862–1865Google Scholar
  14. Li F, Li W, Fu HW, Zhang QB, Koike K (2007) Pancreatic lipase-inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus. Chem Pharm Bull 55:1087–1089CrossRefPubMedGoogle Scholar
  15. Li N, Lee HS, Zhang N, Sun YN, Li JL, Xing SS, Chen JG, Cui L (2015) Two new diphenyl ethers from Acanthopanax senticosus (Rupr. & Maxim.) Harms with PTP1B inhibitory activity. Phytochem Lett 13:286–289CrossRefGoogle Scholar
  16. Oh WK, Lee CH, Seo JH, Chung MY, Cui L, Fomum ZT, Kang JS, Lee HS (2009) Diacylglycerol acyltransferase-inhibitory compounds from Erythrina senegalensis. Arch Pharmacal Res 32:43–47CrossRefGoogle Scholar
  17. Ouyang MA, Wein YS, Zhang ZK, Kuo YH (2007) Inhibitory activity against tobacco mosaic virus (TMV) replication of pinoresinol and syringaresinol lignans and their glycosides from the root of Rhus javanica var. roxburghiana. J Agric Food Chem 55:6460–6465CrossRefPubMedGoogle Scholar
  18. Quang TH, Ngan NTT, Minh CV, Kiem PV, Tai BH, Thao NP, Song SB, Kim YH (2012) Anti-inflammatory and PPAR transactivational effects of secondary metabolites from the root of Asarum sieboldii. Bioorg Med Chem Lett 22:2527–2533CrossRefPubMedGoogle Scholar
  19. Raj M, Kumar RK (2010) Obesity in children & adolescents. Indian J Med Res 132:598–607PubMedPubMedCentralGoogle Scholar
  20. Shang SZ, Kong LM, Yang LP, Jiang J, Huang J, Zhang HB, Shi YM, Zhao W, Li HL, Luo HR, Li Y, Xiao WL, Sun HD (2013) Bioactive phenolics and terpenoids from Manglietia insignis. Fitoterapia 84:58–63CrossRefPubMedGoogle Scholar
  21. Turchetto-Zolet AC, Maraschin FS, Morais GLD, Cagliari A, Andrade CMB, Margis-Pinheiro M, Margis R (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol Biol 11:263–276CrossRefPubMedPubMedCentralGoogle Scholar
  22. Umar A, Iskandar G, Aikemu A, Yiming W, Zhou WT, Berké B, Begaud B, Moore N (2015) Effects of Cydonia oblonga Miller leaf and fruit flavonoids on blood lipids and anti-oxydant potential in hyperlipidemia rats. J Ethnopharmacol 169:239–243CrossRefPubMedGoogle Scholar
  23. Wang CZ, Yu DQ (1998) Lignan and acetylenic glycosides from Aster auriculatus. Phytochemistry 48:711–717CrossRefGoogle Scholar
  24. Wurie HR, Buckett L, Zammit VA (2012) Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells. FEBS J 17:3033–3047CrossRefGoogle Scholar
  25. Xie LH, Akao T, Hamasaki K (2003) Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-pLariciresinol. Chem Pharm Bull 51:508–515CrossRefPubMedGoogle Scholar
  26. Xiong L, Zhu CG, Li YR, Tian Y, Lin S, Yuan SP, Hu JF, Hou Q, Chen NH, Yang YC, Shi JG (2011) Lignans and neolignans from Sinocalamus affinis and their absolute configurations. J Nat Prod 74:1188–1200CrossRefPubMedGoogle Scholar
  27. Yamauchi S, Ina T, Kirikihira T, Masuda T (2004) Synthesis and antioxidant activity of oxygenated furofuran lignans. Biosci Biotechnol Biochem 68:183–192CrossRefPubMedGoogle Scholar
  28. Yan ZW, Liu JP, Lu D, Narlawar R, Groundwater P, Li PY (2014) Two new ceramides from the fruit pulp of Acanthopanax senticosus (Rupr. et Maxim) Harms. Nat Prod Res 28:144–149CrossRefPubMedGoogle Scholar
  29. Ye LQ, Jin LJ, Ma YS, Shi M, Xu YP (2008) Inhibition of inducible nitric oxide synthase by Acanthopanax senticosus extract in RAW264.7 macrophages. Journal of Ethnopharmacol 118:231–236CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2016

Authors and Affiliations

  • Ban-Ban Li
    • 1
  • Jia-Lin Li
    • 1
  • Na Li
    • 1
  • Shi-Zhou Qi
    • 1
  • Hyun-Sun Lee
    • 2
  • Le Zhang
    • 1
  • Shan-Shan Xing
    • 1
  • Zhen-Dong Tuo
    • 1
  • Long Cui
    • 1
  1. 1.College of PharmacyBeihua UniversityJilin CityChina
  2. 2.Chemical Biology Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Ch’ongjuSouth Korea

Personalised recommendations