Skip to main content
Log in

Structural mechanism of GPCR-arrestin interaction: recent breakthroughs

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) are a major membrane receptor family with important physiological and pathological functions. In the classical signaling pathway, ligand-activated GPCRs couple to G proteins, thereby inducing G protein-dependent signaling pathways and phosphorylation by G protein-coupled receptor kinases (GRKs). This leads to an interaction with arrestins, which results in GPCR desensitization. Recently, non-classical GPCR signaling pathways, mediated by GPCR-bound arrestins, have been identified. Consequently, arrestins play important roles in GPCR signaling not only with respect to desensitization but also in relation to G protein-independent signal transduction. These findings have led to efforts to develop functionally biased (i.e. signal transduction biased) GPCR-targeting drugs. One of these efforts is aimed at understanding the structural mechanism of functionally biased GPCR signaling, which includes understanding the G protein-selectivity or arrestin-selectivity of GPCRs. This goal has not yet been achieved; however, great progress has been made during the last 3 years toward understanding the structural mechanism of GPCR-mediated arrestin activation. This review will discuss the recent breakthroughs in the conformational understanding of GPCR-arrestin interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2 a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–17890

    CAS  PubMed  Google Scholar 

  • Bennett N, Sitaramayya A (1988) Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin). Biochemistry 27:1710–1715

    Article  CAS  PubMed  Google Scholar 

  • Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ (1987) Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci USA 84:8879–8882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabana J, Holleran B, Leduc R, Escher E, Guillemette G, Lavigne P (2015) Identification of distinct conformations of the angiotensin-II type 1 receptor associated with the Gq/11 protein pathway and the beta-arrestin pathway using molecular dynamics simulations. J Biol Chem 290:15835–15854

    Article  CAS  PubMed  Google Scholar 

  • Carter JM, Gurevich VV, Prossnitz ER, Engen JR (2005) Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry. J Mol Biol 351:865–878

    Article  CAS  PubMed  Google Scholar 

  • Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655

    Article  CAS  PubMed  Google Scholar 

  • Craft CM, Whitmore DH, Wiechmann AF (1994) Cone arrestin identified by targeting expression of a functional family. J Biol Chem 269:4613–4619

    CAS  PubMed  Google Scholar 

  • Defea KA (2011) Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 23:621–629

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366

    Article  CAS  PubMed  Google Scholar 

  • Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    Article  CAS  PubMed  Google Scholar 

  • Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921

    Article  CAS  PubMed  Google Scholar 

  • Gurevich EV, Gurevich VV (2006a) Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2006b) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2013) Structural determinants of arrestin functions. Prog Mol Biol Transl Sci 118:57–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 Å: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 Å crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, De Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci USA 109:18407–18412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Yun Y, Kim HR, Seo MD, Chung KY (2015) Different conformational dynamics of various active states of beta-arrestin1 analyzed by hydrogen/deuterium exchange mass spectrometry. J Struct Biol 190:250–259

    Article  CAS  PubMed  Google Scholar 

  • Kuhn H, Wilden U (1987) Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin. J Recept Res 7:283–298

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96:3712–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse MJ, Hoffmann C (2014) Arrestin interactions with G protein-coupled receptors. Handb Exp Pharmacol 219:15–56

    Article  CAS  PubMed  Google Scholar 

  • Lohse MJ, Benovic JL, Caron MG, Lefkowitz RJ (1990a) Multiple pathways of rapid beta 2-adrenergic receptor desensitization. Delineation with specific inhibitors. J Biol Chem 265:3202–3211

    CAS  PubMed  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990b) Beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM (2013) Arrestin pathways as drug targets. Prog Mol Biol Transl Sci 118:469–497

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Miller WE (2013) Arrestins as regulators of kinases and phosphatases. Prog Mol Biol Transl Sci 118:115–147

    Article  CAS  PubMed  Google Scholar 

  • Mary S, Damian M, Louet M, Floquet N, Fehrentz JA, Marie J, Martinez J, Baneres JL (2012) Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc Natl Acad Sci USA 109:8304–8309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mary S, Fehrentz JA, Damian M, Verdie P, Martinez J, Marie J, Baneres JL (2013) How ligands and signalling proteins affect G-protein-coupled receptors’ conformational landscape. Biochem Soc Trans 41:144–147

    Article  CAS  PubMed  Google Scholar 

  • Mcdonald PH, Cote NL, Lin FT, Premont RT, Pitcher JA, Lefkowitz RJ (1999) Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. J Biol Chem 274:10677–10680

    Article  CAS  PubMed  Google Scholar 

  • Murakami A, Yajima T, Sakuma H, Mclaren MJ, Inana G (1993) X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett 334:203–209

    Article  CAS  PubMed  Google Scholar 

  • Ostermaier MK, Peterhans C, Jaussi R, Deupi X, Standfuss J (2014a) Functional map of arrestin-1 at single amino acid resolution. Proc Natl Acad Sci USA 111:1825–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostermaier MK, Schertler GF, Standfuss J (2014b) Molecular mechanism of phosphorylation-dependent arrestin activation. Curr Opin Struct Biol 29:143–151

    Article  CAS  PubMed  Google Scholar 

  • Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, Sharma KS, Durand G, Pucci B, Trinquet E, Zwier JM, Deupi X, Bron P, Baneres JL, Mouillac B, Granier S (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci USA 109:6733–6738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen SG, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL Jr, Kobilka BK, Skiniotis G, Lefkowitz RJ (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512:218–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha A, Jones Brunette AM, Fay JF, Schafer CT, Farrens DL (2014) Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding. Biochemistry 53:3294–3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer ME, Hofmann KP, Heck M (2012) Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nat Commun 3:995

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterne-Marr R, Gurevich VV, Goldsmith P, Bodine RC, Sanders C, Donoso LA, Benovic JL (1993) Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem 268:15640–15648

    CAS  PubMed  Google Scholar 

  • Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3 Å: evolution of receptor specificity. J Mol Biol 354:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Szczepek M, Beyriere F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, Von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5:4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Violin JD, Crombie AL, Soergel DG, Larkm MW (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 35:308–316

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288:11741–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacker WB, Donoso LA, Kalsow CM, Yankeelov JA Jr, Organisciak DT (1977) Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J Immunol 119:1949–1958

    CAS  PubMed  Google Scholar 

  • Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 17:126–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilden U, Wust E, Weyand I, Kuhn H (1986) Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Lett 207:292–295

    Article  CAS  PubMed  Google Scholar 

  • Yun Y, Kim DK, Seo MD, Kim KM, Chung KY (2015) Different conformational dynamics of beta-arrestin1 and beta-arrestin2 analyzed by hydrogen/deuterium exchange mass spectrometry. Biochem Biophys Res Commun 457:50–57

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J Mol Biol 406:467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci USA 110:927–942

    Google Scholar 

  • Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS (2014) Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 289:20991–21002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman R, Cheasty JE (1986) A 48 kDa protein arrests cGMP phosphodiesterase activation in retinal rod disk membranes. FEBS Lett 207:35–41

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (NRF-2015R1A1A1A05027473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Young Chung.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.Y., Lee, S.Y., Kim, H.R. et al. Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Arch. Pharm. Res. 39, 293–301 (2016). https://doi.org/10.1007/s12272-016-0712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0712-1

Keywords

Navigation