Skip to main content
Log in

Inhibitory evaluation of oligonol on α-glucosidase, protein tyrosine phosphatase 1B, cholinesterase, and β-secretase 1 related to diabetes and Alzheimer’s disease

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Oligonol is a low-molecular-weight form of polyphenol that is derived from lychee fruit extract and contains catechin-type monomers and oligomers of proanthocyanidins. This study investigates the anti-diabetic activities of oligonol via α-glucosidase and human recombinant protein tyrosine phosphatase 1B (PTP1B) assays, as well as its anti-Alzheimer activities by evaluating the ability of this compound to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1). Oligonol exhibited potent concentration-dependent anti-diabetic activities by inhibiting α-glucosidase and PTP1B with IC50 values of 23.14 µg/mL and 1.02 µg/mL, respectively. Moreover, a kinetics study revealed that oligonol inhibited α-glucosidase (K i = 22.36) and PTP1B (K i = 8.51) with characteristics typical of a mixed inhibitor. Oligonol also displayed potent concentration-dependent inhibitory activity against AChE and BChE with IC50 values of 4.34 µg/mL and 2.07 µg/mL, respectively. However, oligonol exhibited only marginal concentration-dependent BACE1 inhibitory activity with an IC50 value of 130.45 µg/mL. A kinetics study revealed mixed-type inhibition against AChE (K i = 4.65) and BACE1 (K i = 58.80), and noncompetitive-type inhibition against BChE (K i = 9.80). Furthermore, oligonol exhibited dose-dependent inhibitory activity against peroxynitrite (ONOO)-mediated protein tyrosine nitration. These results indicate that oligonol has strong preventative potential in diabetes mellitus and in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayodhya S, Kusum S, Anjali S (2010) Hypoglycemic activity of different extract of various herbal plants. Int J Res Ayurveda Pharm 1:212–224

    Google Scholar 

  • Brat P, George S, Bellamy A, Du Chaffaut L, Scalbert A, Mennen L, Arnault N, Amiot MJ (2006) Daily polyphenol intake in France from fruit and vegetables. J Nutr 136:2368–2373

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548–554

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A, Mercuri F, Quagliaro L, Assaloni R, Motz E, Tonutti L, Taboga C (2001) Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia 34:834–838

    Google Scholar 

  • Choi YY, Maeda T, Fujii H, Yokozawa T, Kim HY, Cho EJ, Shibamoto T (2014) Oligonol improves memory and cognition under an amyloid β(25-35)-induced Alzheimer’s mouse model. Nutr Res 34:595–603

    Article  CAS  PubMed  Google Scholar 

  • Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J 137:143–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Na M, Oh H, Bae EY, Jeong DG, Ryu SE, Kim S, Kim BY, Oh WK, Ahn JS (2006) Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg Med Chem Lett 16:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos MD, Almeida MC, Lopes NP, de Souza GE (2006) Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol Pharm Bull 29:2236–2240

    Article  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Evin G, Lessene G, Wilkins S (2011) BACE inhibitors as potential drugs for the treatment of Alzheimer’s disease: focus on bioactivity. Recent Pat CNS Drug Discov 6:91–106

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Nishioka H, Wakame K, Magnuson BA, Roberts A (2008) Acute, subchronic and genotoxicity studies conducted with oligonol, an oligomerized polyphenol formulated from lychee and green tea extracts. Food Chem Toxicol 46:3553–3562

    Article  CAS  PubMed  Google Scholar 

  • Haan MN (2006) Therapy insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat Clin Pract Neurol 2:159–166

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Lin S, Wen L, Jiang Y, Zhao M, Chen F, Prasad KN, Duan X, Yang B (2013) Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity evaluation. Food Chem 136:563–568

    Article  CAS  PubMed  Google Scholar 

  • Jo EH, Lee SJ, Ahn NS, Park JS, Hwang JW, Kim SH, Aruoma OI, Lee YS, Kang KS (2007) Induction of apoptosis in MCF-7 and MDA-MB-231 breast cancer cells by oligonol is mediated by Bcl-2 family regulation and MEK/ERK signaling. Eur J Cancer Prev 16:342–347

    Article  CAS  PubMed  Google Scholar 

  • Johnson TO, Ermolieff J, Jirousek MR (2002) Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 1:696–709

    Article  CAS  PubMed  Google Scholar 

  • Jones PJ, Varady KA (2008) Are functional foods redefining nutritional requirements? Appl Physiol Nutr Metab 33:118–123

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Jin SE, Choi RJ, Kim DH, Kim YS, Ryu JH, Kim DW, Son YK, Park JJ, Choi JS (2010) Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacity, as well as inhibition of ChEs and BACE1. Life Sci 87:420–430

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kwon CS, Son KH (2000) Inhibition of alpha glucosidase and amylase by luteolin, a flavonoid. Biosci Biotechnol Biochem 64:2458–2461

    Article  CAS  PubMed  Google Scholar 

  • Kitadate K, Homma K, Roberts A, Maeda T (2014) Thirteen-week oral dose toxicity study of oligonol containing oligomerized polyphenols extracted from lychee and green tea. Regul Toxicol Pharmacol 68:140–146

    Article  CAS  PubMed  Google Scholar 

  • Kundu JK, Chang EJ, Fujii H, Sun B, Surh YJ (2008) Oligonol inhibits UVB-induced COX-2 expression in HR-1 hairless mouse skin AP-1 and C/EBP as potential upstream targets. Photochem Photobiol 84:399–406

    Article  CAS  PubMed  Google Scholar 

  • Kusari J, Kenner KA, Shu KI, Hill DE, Henry RR (1994) Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. J Clin Invest 93:1156–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, Park YI, Lee CK, Kim YB, Lee SY, Jang CG (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649:210–217

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Jang JH, Sun B, Surh YJ (2004) Protective effects of oligomers of grape seed polyphenols against beta-amyloid-induced oxidative cell death. Ann N Y Acad Sci 1030:317–329

    Article  CAS  PubMed  Google Scholar 

  • Li T, Zhzng XD, Song YW, Liu WA (2005) A microplate based screening method for α-glucosidase inhibitors. Chin J Clin Pharmacol Ther 10:1128–1134

    Google Scholar 

  • Lin L (2008) Commonality between diabetes and Alzheimer’s disease and a new strategy for the therapy. Clin Med Pathol 1:83–91

    PubMed  PubMed Central  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Miura T, Kitadate K, Fujii H (2010) The function of the next generation polyphenol, “Oligonol”. In: Bagchi D, Lau FC, Ghosh DK (eds) Biotechnology in functional foods and nutraceuticals. Florida, Boca Raton, pp 91–101

    Chapter  Google Scholar 

  • Nishioka H, Fujii H, Sun B, Aruoma OI (2006) Comparative efficacy of oligonol, catechin and (-)-epigallocatechin 3-O-gallate in modulating the potassium bromate-induced renal toxicity in rats. Toxicology 226:181–187

    Article  CAS  PubMed  Google Scholar 

  • Noh JS, Kim HY, Park CH, Fujii H, Yokozawa T (2010) Hypolipidaemic and antioxidative effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit, on renal damage in type 2 diabetic mice. Br J Nutr 104:1120–1128

    Article  CAS  PubMed  Google Scholar 

  • Noh JS, Park CH, Yokozawa T (2011) Treatment with oligonol, a low-molecular polyphenol derived from lychee fruit, attenuates diabetes-induced hepatic damage through regulation of oxidative stress and lipid metabolism. Br J Nutr 106:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Nonaka GI, Sun B, Yuan L, Nakagawa T, Fujii H, Surh YJ. Sulfur-containing proanthocyanidin oligomer composition and process for producing the same. International Patent Application No.; WO/2004/103988 A1

  • Ogasawara J, Kitadate K, Nishioka H, Fujii H, Sakurai T, Kizaki T, Izawa T, Ishida H, Ohno H (2009) Oligonol, a new lychee fruit-derived low-molecular form of polyphenol, enhances lipolysis in primary rat adipocytes through activation of the ERK1/2 pathway. Phytother Res 23:1626–1633

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Noh JS, Fujii H, Roh S-S, Song Y-O, Choi JS, Chung HY, Yokozawa T (2015a) Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, attenuates gluco-lipotoxicity-mediated renal disorder in type 2 diabetic db/db mice. Drug Discov Ther 9:13–22

    Article  PubMed  Google Scholar 

  • Park JY, Kim Y, Im JA, Lee H (2015b) Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model. BMC Complement Altern Med 15:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106:165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao AA, Sridhar GR, Das UN (2007) Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med Hypotheses 69:1272–1276

    Article  CAS  PubMed  Google Scholar 

  • Reddy VP, Zhu X, Perry G, Smith MA (2009) Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis 16:763–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 82:510–529

    Article  PubMed  Google Scholar 

  • Rosales-Corral S, Tan DX, Manchester L, Reiter RJ (2015) Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress. Oxid Med Cell Longev. doi:10.1155/2015/985845

    PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Nishioka H, Fujii H, Nakano N, Kizaki T, Radak Z, Izawa T, Haga S, Ohno H (2008) Antioxidative effects of a new lychee fruit-derived polyphenol mixture, oligonol, converted into a low-molecular form in adipocytes. Biosci Biotechnol Biochem 72:463–476

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–2657

    CAS  PubMed  Google Scholar 

  • Sridhar GR, Thota H, Allam AR, Babu CS, Prasad AS, Divakar Ch (2006) Alzheimer’s disease and type 2 diabetes mellitus: the cholinesterase connection? Lipids Health Dis 5:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Standl E, Schnell O (2012) α-glucosidase inhibitors 2012—cardiovascular considerations and trial evaluation. Diab Vasc Dis Res 9:163–169

    Article  PubMed  Google Scholar 

  • Tomobe K, Fujii H, Sun B, Nishioka H, Aruoma OI (2007) Modulation of infection induced inflammation and locomotive deficit and longevity in senescence accelerated mice prone (SAMP8) model by the oligomerized polyphenol oligonol. Biomed Pharmacother 61:427–434

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lou G, Ma Z, Liu X (2011) Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chem 126:1081–1087

    Article  CAS  Google Scholar 

  • Wang Y, Xiang L, Wang C, Tang C, He X (2013) Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS ONE 8:e71144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Song W (2013) Molecular links between Alzheimer’s disease and diabetes mellitus. Neuroscience 250:140–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Yokoo H, Nishioka H, Fujii H, Matsuda N, Hayashi T, Hattori Y (2010) Beneficial effect of the oligomerized polyphenol oligonol on high glucose induced changes in eNOS phosphorylation and dephosphorylation in endothelial cells. Br J Pharmacol 159:928–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Grant of Pukyong National University (Granted in 2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Sue Choi or Hyun Ah Jung.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.S., Bhakta, H.K., Fujii, H. et al. Inhibitory evaluation of oligonol on α-glucosidase, protein tyrosine phosphatase 1B, cholinesterase, and β-secretase 1 related to diabetes and Alzheimer’s disease. Arch. Pharm. Res. 39, 409–420 (2016). https://doi.org/10.1007/s12272-015-0682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0682-8

Keywords

Navigation