Skip to main content
Log in

Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Numerous studies have demonstrated that oxidative stress and inflammation play a pivotal role in the pathophysiology of Alzheimer disease (AD). Hesperidin (HP) has various pharmacological effects including anti-oxidative, anti-inflammatory and neuroprotective properties. In this study, APP/PS1 mice were used to evaluate the neuroprotective effects of HP. We reported that intragastric administration of HP (40 mg/kg) for 90 days significantly attenuated cognitive impairment in APP/PS1 mice. HP treatment suppressed oxidative stress by reducing the levels of ROS, LPO, protein carbonyl and 8-OHdG and increasing the activity of HO-1, SOD, catalase, and GSH-Px. HP treatment also inhibited inflammation by decreasing the levels of TNF-α, C-reactive protein and MCP-1 and reducing the activity of NF-κB. Moreover, HP could reverse the decreased phosphorylation of Akt, the decreased phosphorylation of GSK-3β, the lessened Nrf2 and the reduced expression of HO-1. HP could also inhibit the increased the RAGE expression, the enhanced phosphorylation of IκBα, and the augmented nuclear translocation of NF-κB/p65 in cortex of APP/PS1 mice. Taken together, HP suppresses oxidative stress and inflammation via activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling and further confers neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostinho, P., R.A. Cunha, and C. Oliveira. 2010. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Current Pharmaceutical Design 16: 2766–2778.

    Article  PubMed  CAS  Google Scholar 

  • Alam, J., D. Stewart, C. Touchard, S. Boinapally, A.M. Choi, and J.L. Cook. 1999. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. The Journal of biological chemistry 274: 26071–26078.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., D.G. Walker, A.M. Schmidt, O. Arancio, L.F. Lue, and S.D. Yan. 2007. RAGE: a potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Current Molecular Medicine 7: 735–742.

    Article  PubMed  CAS  Google Scholar 

  • Dai, Q., A.R. Borenstein, Y. Wu, J.C. Jackson, and E.B. Larson. 2006. Fruit and vegetable juices and Alzheimer’s disease: The Kame Project. The American journal of medicine 119: 751–759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang, F., L.F. Lue, S. Yan, H. Xu, J.S. Luddy, D. Chen, D.G. Walker, D.M. Stern, S. Yan, A.M. Schmidt, J.X. Chen, and S.S. Yan. 2010. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 24: 1043–1055.

    Article  CAS  Google Scholar 

  • Farr, S.A., J.L. Ripley, R. Sultana, Z. Zhang, M.L. Niehoff, T.L. Platt, M.P. Murphy, J.E. Morley, V. Kumar, and D.A. Butterfield. 2014. Antisense oligonucleotide against GSK-3beta in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radical Biology and Medicine 67: 387–395.

    Article  PubMed  CAS  Google Scholar 

  • Furnari, M.A., C.L. Saw, A.N. Kong, and G.C. Wagner. 2014. Altered behavioral development in Nrf2 knockout mice following early postnatal exposure to valproic acid. Brain Research Bulletin 109: 132–142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gouras, G.K., K. Willen, and D. Tampellini. 2012. Critical role of intraneuronal Abeta in Alzheimer’s disease: Technical challenges in studying intracellular Abeta. Life Sciences 91: 1153–1158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grundman, M., M. Grundman, and P. Delaney. 2002. Antioxidant strategies for Alzheimer’s disease. The Proceedings of the Nutrition Society 61: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • He, F.Q., B.Y. Qiu, X.H. Zhang, T.K. Li, Q. Xie, D.J. Cui, X.L. Huang, and H.T. Gan. 2011. Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-kappaB activation in a rat model of Alzheimer’s disease induced by amyloid-beta(1–42). Brain Research 1384: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S.M., S.Y. Tsai, J.A. Lin, C.H. Wu, and G.C. Yen. 2012. Cytoprotective effects of hesperetin and hesperidin against amyloid beta-induced impairment of glucose transport through downregulation of neuronal autophagy. Molecular Nutrition & Food Research 56: 601–609.

    Article  CAS  Google Scholar 

  • Hwang, S.L., P.H. Shih, and G.C. Yen. 2012. Neuroprotective effects of citrus flavonoids. Journal of Agricultural and Food Chemistry 60: 877–885.

    Article  PubMed  CAS  Google Scholar 

  • Hybertson, B.M., B. Gao, S.K. Bose, and J.M. Mccord. 2011. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Molecular Aspects of Medicine 32: 234–246.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, G., K.A. Gan, D.A. Johnson, and J.A. Johnson. 2015. Increased Alzheimer’s disease-like pathology in the APP/PS1DeltaE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiology of Aging 36: 664–679.

    Article  PubMed  CAS  Google Scholar 

  • Justin Thenmozhi, A., T.R. Raja, U. Janakiraman, and T. Manivasagam. 2015. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochemical Research 40: 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Kanninen, K., R. Heikkinen, T. Malm, T. Rolova, S. Kuhmonen, H. Leinonen, S. Yla-Herttuala, H. Tanila, A.L. Levonen, M. Koistinaho, and J. Koistinaho. 2009. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America 106: 16505–16510.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanninen, K., T.M. Malm, H.K. Jyrkkanen, G. Goldsteins, V. Keksa-Goldsteine, H. Tanila, M. Yamamoto, S. Yla-Herttuala, A.L. Levonen, and J. Koistinaho. 2008. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Molecular and Cellular Neurosciences 39: 302–313.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, K., T. Matsumoto, and Y. Kumazawa. 2011. Effects of antioxidant polyphenols on TNF-alpha-related diseases. Current Topics in Medicinal Chemistry 11: 1767–1779.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., C. Zug, H. Qu, H. Schluesener, and Z. Zhang. 2015. Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behavioural Brain Research 281: 32–42.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R., T.T. Zhang, D. Zhou, X.Y. Bai, W.L. Zhou, C. Huang, J.K. Song, F.R. Meng, C.X. Wu, L. Li, and G.H. Du. 2013. Quercetin protects against the Abeta(25-35)-induced amnesic injury: Involvement of inactivation of rage-mediated pathway and conservation of the NVU. Neuropharmacology 67: 419–431.

    Article  PubMed  CAS  Google Scholar 

  • Lue, L.F., D.G. Walker, L. Brachova, T.G. Beach, J. Rogers, A.M. Schmidt, D.M. Stern, and S.D. Yan. 2001. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: Identification of a cellular activation mechanism. Experimental Neurology 171: 29–45.

    Article  PubMed  CAS  Google Scholar 

  • Lue, L.F., D.G. Walker, S. Jacobson, and M. Sabbagh. 2009. Receptor for advanced glycation end products: Its role in Alzheimer’s disease and other neurological diseases. Future Neurology 4: 167–177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller, M.C., R. Tavares, C.E. Johanson, V. Hovanesian, J.E. Donahue, L. Gonzalez, G.D. Silverberg, and E.G. Stopa. 2008. Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Research 1230: 273–280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rada, P., A.I. Rojo, S. Chowdhry, M. Mcmahon, J.D. Hayes, and A. Cuadrado. 2011. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Molecular and Cellular Biology 31: 1121–1133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raza, S.S., M.M. Khan, A. Ahmad, M. Ashafaq, G. Khuwaja, R. Tabassum, H. Javed, M.S. Siddiqui, M.M. Safhi, and F. Islam. 2011. Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Research 1420: 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Roohbakhsh, A., H. Parhiz, F. Soltani, R. Rezaee, and M. Iranshahi. 2014. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin–a mini-review. Life Sciences 113: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, M., and S. Yamagishi. 2008. Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Current Pharmaceutical Design 14: 973–978.

    Article  PubMed  CAS  Google Scholar 

  • Tan, X., J. Gu, B. Zhao, S. Wang, J. Yuan, C. Wang, J. Chen, J. Liu, L. Feng, and X. Jia. 2015. Ginseng improves cognitive deficit via the RAGE/NF-kappaB pathway in advanced glycation end product-induced rats. Journal of ginseng research 39: 116–124.

    Article  PubMed  CAS  Google Scholar 

  • Verri, M., O. Pastoris, M. Dossena, R. Aquilani, F. Guerriero, G. Cuzzoni, L. Venturini, G. Ricevuti, and A.I. Bongiorno. 2012. Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimers disease. International Journal of Immunopathology and Pharmacology 25: 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.Y., J.W. Xie, Y. Xu, T. Wang, J.H. Cai, X. Wang, B.L. Zhao, L. An, and Z.Y. Wang. 2013. Trientine reduces BACE1 activity and mitigates amyloidosis via the AGE/RAGE/NF-kappaB pathway in a transgenic mouse model of Alzheimer’s disease. Antioxidants & Redox Signaling 19: 2024–2039.

    Article  CAS  Google Scholar 

  • Wang, D., L. Liu, X. Zhu, W. Wu, and Y. Wang. 2014. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cellular and Molecular Neurobiology 34: 1209–1221.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., and W. Li. 2014. Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates insulin resistance induced by high-fat via activation of PI3K/AKT signaling. Oxidative Medicine and Cellular Longevity 2014: 145641.

    PubMed  PubMed Central  Google Scholar 

  • Yankner, B.A., and T. Lu. 2009. Amyloid beta-protein toxicity and the pathogenesis of Alzheimer disease. The Journal of Biological Chemistry 284: 4755–4759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping An.

Ethics declarations

Conflict of interest

There are no actual or potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., An, Z. Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling. Arch. Pharm. Res. 41, 655–663 (2018). https://doi.org/10.1007/s12272-015-0662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0662-z

Keywords

Navigation