Archives of Pharmacal Research

, Volume 38, Issue 9, pp 1617–1626 | Cite as

Existing drugs and their application in drug discovery targeting cancer stem cells

  • Junfang Lv
  • Joong Sup Shim


Despite standard cancer therapies such as chemotherapy and targeted therapy have shown some efficacies, the cancer in many cases eventually relapses and metastasizes upon stopping the treatment. There is a small subpopulation of cancer cells within tumor, with specific characters similar to those found in stem cells. This group of cancer cells is known as tumor-initiating or cancer stem cells (CSCs), which have an ability to self-renew and give rise to cancer cell progeny. CSCs are related with drug resistance, metastasis and relapse of cancer, hence emerging as a crucial drug target for eliminating cancer. Rapid advancement of CSC biology has enabled researchers to isolate and culture CSCs in vitro, making the cells amenable to high-throughput drug screening. Recently, drug repositioning, which utilizes existing drugs to develop potential new indications, has been gaining popularity as an alternative approach for the drug discovery. As existing drugs have favorable bioavailability and safety profiles, drug repositioning is now actively exploited for prompt development of therapeutics for many serious diseases, such as cancer. In this review, we will introduce latest examples of attempted drug repositioning targeting CSCs and discuss potential use of the repositioned drugs for cancer therapy.


Cancer stem cell Drug repositioning Niclosamide Metformin Choloroquine 



This work was supported by the Science and Technology Development Fund (FDCT) of Macau SAR (FDCT/119/2013/A3), Matching Research Grant (MRG002/JSS/2015/FHS) and Multi-Year Research Grant (MYRG2015-00181-FHS) of the University of Macau.

Compliance with Ethical Standards

Conflict of interest

The authors have declared that there are no conflict of interest.


  1. Abdullah, L.N., and E.K. Chow. 2013. Mechanisms of chemoresistance in cancer stem cells. Clinical and Translational Medicine 2: 3.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Abel, E.V., E.J. Kim, J. Wu, M. Hynes, F. Bednar, E. Proctor, L. Wang, M.L. Dziubinski, and D.M. Simeone. 2014. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS One 9: e91983.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Abubaker, K., R.B. Luwor, H. Zhu, O. McNally, M.A. Quinn, C.J. Burns, E.W. Thompson, J.K. Findlay, and N. Ahmed. 2014. Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden. BMC Cancer 14: 317.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Ahn, H.J., G. Kim, and K.S. Park. 2013. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway. Biochemical and Biophysical Research Communications 437: 557–564.CrossRefPubMedGoogle Scholar
  5. Al-Hadiya, B. 2004. Niclosamide: Comprehensive profile. Profiles of Drug Substances, Excipients and Related Methodology 32: 67–96.CrossRefGoogle Scholar
  6. Al-Hajj, M., M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, and M.F. Clarke. 2003. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences USA 100: 3983–3988.CrossRefGoogle Scholar
  7. Ashburn, T.T., and K.B. Thor. 2004. Drug repositioning: Identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery 3: 673–683.CrossRefPubMedGoogle Scholar
  8. Augustijns, P., P. Geusens, and N. Verbeke. 1992. Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. European Journal of Clinical Pharmacology 42: 429–433.PubMedGoogle Scholar
  9. Axelson, M., K. Liu, X. Jiang, K. He, J. Wang, H. Zhao, D. Kufrin, T. Palmby, Z. Dong, A.M. Russell, S. Miksinski, P. Keegan, and R. Pazdur. 2013. U.S. Food and Drug Administration approval: Vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma. Clinical Cancer Research 19: 2289–2293.CrossRefPubMedGoogle Scholar
  10. Bailey, C.J., and C. Day. 2004. Metformin: Its botanical background. Practical Diabetes International 21: 115–117.CrossRefGoogle Scholar
  11. Bailey, C.J., and R.C. Turner. 1996. Metformin. New England Journal of Medicine 334: 574–579.CrossRefPubMedGoogle Scholar
  12. Balic, A., M.D. Sorensen, S.M. Trabulo, B. Sainz Jr, M. Cioffi, C.R. Vieira, I. Miranda-Lorenzo, M. Hidalgo, J. Kleeff, M. Erkan, and C. Heeschen. 2014. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Molecular Cancer Therapeutics 13: 1758–1771.CrossRefPubMedGoogle Scholar
  13. Bao, B., Z. Wang, S. Ali, A. Ahmad, A.S. Azmi, S.H. Sarkar, S. Banerjee, D. Kong, Y. Li, S. Thakur, and F.H. Sarkar. 2012. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prevention Research 5: 355–364.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Cai, W.Y., T.Z. Wei, Q.C. Luo, Q.W. Wu, Q.F. Liu, M. Yang, G.D. Ye, J.F. Wu, Y.Y. Chen, and G.B. Sun. 2013. The Wnt–β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. Journal of Cell Science 126: 2877–2889.CrossRefPubMedGoogle Scholar
  15. Chen, K., Y.H. Huang, and J.L. Chen. 2013. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacologica Sinica 34: 732–740.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Chen, M., J. Wang, J. Lu, M.C. Bond, X.R. Ren, H.K. Lyerly, L.S. Barak, and W. Chen. 2009. The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry 48: 10267–10274.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Choi, D.S., E. Blanco, Y.S. Kim, A.A. Rodriguez, H. Zhao, T.H. Huang, C.L. Chen, G.X. Jin, M.D. Landis, L.A. Burey, W. Qian, S.M. Granados, B. Dave, H.H. Wong, M. Ferrari, S.T. Wong, and J.C. Chang. 2014. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cells 32: 2309–2323.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Chong, C.R., X. Chen, L. Shi, J.O. Liu, and D.J. Sullivan Jr. 2006. A clinical drug library screen identifies astemizole as an antimalarial agent. Nature Chemical Biology 2: 415–416.CrossRefPubMedGoogle Scholar
  19. Collins, A.T., P.A. Berry, C. Hyde, M.J. Stower, and N.J. Maitland. 2005. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research 65: 10946–10951.CrossRefPubMedGoogle Scholar
  20. Curley, M.D., V.A. Therrien, C.L. Cummings, P.A. Sergent, C.R. Koulouris, A.M. Friel, D.J. Roberts, M.V. Seiden, D.T. Scadden, B.R. Rueda, and R. Foster. 2009. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 27: 2875–2883.Google Scholar
  21. Czyz, D.M., L.P. Potluri, N. Jain-Gupta, S.P. Riley, J.J. Martinez, T.L. Steck, S. Crosson, H.A. Shuman, and J.E. Gabay. 2014. Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens. mBio 5: e01534; 14.PubMedCentralPubMedGoogle Scholar
  22. Dalerba P, S.J. Dylla, I.K. Park, R. Liu, X.H. Wang, R.W. Cho, T. Hoey, A. Gurney, E.H. Huang, D.M. Simeone, A.A Shelton, G. Parmiani, C. Castelli, and M.F. Clarke. 2007. Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences USA 104: 10158–10163.Google Scholar
  23. Dean, M. 2009. ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology Neoplasia 14: 3–9.CrossRefPubMedGoogle Scholar
  24. DeCastro, A.J., P. Cherukuri, A. Balboni, J. DiRenzo. 2015. ΔNP63α transcriptionally activates chemokine receptor 4 (CXCR4) expression to regulate breast cancer stem cell activity and chemotaxis. Molecular Cancer Therapeutics 14: 225–235.Google Scholar
  25. Diamandis, P., J. Wildenhain, I.D. Clarke, A.G. Sacher, J. Graham, D.S. Bellows, E.K. Ling, R.J. Ward, L.G. Jamieson, M. Tyers, and P.B. Dirks. 2007. Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chemical Biology 3: 268–273.CrossRefPubMedGoogle Scholar
  26. Doudican, N., A. Rodriguez, I. Osman, and S.J. Orlow. 2008. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Molecular Cancer Research 6: 1308–1315.CrossRefPubMedGoogle Scholar
  27. Eramo, A., F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio, C. Conticello, L. Ruco, C. Peschle, and R.De Maria. 2008. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death & Differentiation 15: 504–514.Google Scholar
  28. Fang, D., T.K. Nguyen, K. Leishear, R. Finko, A.N. Kulp, S. Hotz, P.A. Van Belle, X.W. Xu, D.E. Elder, M. Herlyn. 2005. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research 65: 9328–9337.Google Scholar
  29. Finsterer, J., and M. Frank. 2013. Repurposed drugs in metabolic disorders. Current Topics in Medicinal Chemistry 13: 2386–2394.CrossRefPubMedGoogle Scholar
  30. Frayha, G.J., J.D. Smyth, J.G. Gobert, and J. Savel. 1997. The mechanisms of action of antiprotozoal and anthelmintic drugs in man. General Pharmacology 28: 273–299.CrossRefPubMedGoogle Scholar
  31. Gibbs, C.P., V.G. Kukekov, J.D. Reith, O. Tchigrinova, O.N. Suslov, E.W. Scott, S.C. Ghivizzani, T.N Ignatova, and D.A. Steindler. 2005. Stem-like cells in bone sarcomas: Implications for tumorigenesis. Neoplasia. 7: 967–976.Google Scholar
  32. Gupta, P.B., T.T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R.A. Weinberg, and E.S. Lander. 2009. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138: 645–659.CrossRefPubMedGoogle Scholar
  33. Hempelmann, E. 2007. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitology Research 100: 671–676.CrossRefPubMedGoogle Scholar
  34. Hermann, P.C., S.L. Huber, T. Herrler, A. Aicher, J.W. Ellwart, M. Guba, C.J. Bruns, and C. Heeschen. 2007. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 1: 313–323.Google Scholar
  35. Hothi, P., T.J. Martins, L.P. Chen, L. Deleyrolle, J.G. Yoon, B. Reynolds, and G. Foltz. 2012. High-throughput chemical screens identify disulfiram as an inhibitor of human glioblastoma stem cells. Oncotarget 3: 1124–1136.PubMedCentralPubMedGoogle Scholar
  36. Huang, E.H., M.J. Hynes, T. Zhang, C. Ginestier, G. Dontu, H. Appelman, J.Z. Fields, M.S. Wicha, and B.M. Boman. 2009. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research 69: 3382–3389.Google Scholar
  37. Huang, R., N. Southall, Y. Wang, A. Yasgar, P. Shinn, A. Jadhav, D.T. Nguyen, and C.P. Austin. 2011. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Science Translational Medicine 3: 80ps16.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Jiang, R., Y. Li, A. Zhang, B. Wang, Y. Xu, W. Xu, Y. Zhao, F. Luo, and Q. Liu. 2014. The acquisition of cancer stem cell-like properties and neoplastic transformation of human keratinocytes induced by arsenite involves epigenetic silencing of let-7c via Ras/NF-κB. Toxicology Letters 227: 91–98.CrossRefPubMedGoogle Scholar
  39. Ketley, A., C.Z. Chen, X. Li, S. Arya, T.E. Robinson, J. Granados-Riveron, I. Udosen, G.E. Morris, I. Holt, D. Furling, S. Chaouch, B. Haworth, N. Southall, P. Shinn, W. Zheng, C.P. Austin, C.J. Hayes, and J.D. Brook. 2014. High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines. Human Molecular Genetics 23: 1551–1562.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Khanim, F.L., B.A. Merrick, H.V. Giles, M. Jankute, J.B. Jackson, L.J. Giles, J. Birtwistle, C.M. Bunce, and M.T. Drayson. 2011. Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production. Blood Cancer Journal 1: e39.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Kim, C.F., E.L. Jackson, A.E. Woolfenden, S. Lawrence, I. Babar, S. Vogel, D. Crowley, R.T. Bronson, and T. Jacks. 2005. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121: 823–835.Google Scholar
  42. Kimlin, L.C., G. Casagrande, and V.M. Virador. 2013. In vitro three-dimensional (3D) models in cancer research: An update. Molecular Carcinogenesis 52: 167–182.CrossRefPubMedGoogle Scholar
  43. Kimura, T., Y. Takabatake, A. Takahashi, and Y. Isaka. 2013. Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Research 73: 3–7.CrossRefPubMedGoogle Scholar
  44. Krafts, K., E. Hempelmann, and A. Skorska-Stania. 2012. From methylene blue to chloroquine: A brief review of the development of an antimalarial therapy. Parasitology Research 111: 1–6.CrossRefPubMedGoogle Scholar
  45. Lapidot, T., C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes, M. Minden, B. Paterson, M.A. Caligiuri, and J.E. Dick. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648.CrossRefPubMedGoogle Scholar
  46. Li, C., D.G. Heidt, P. Dalerba, C.F. Burant, L. Zhang, V. Adsay, M. Wicha, M.F. Clarke, and D.M. Simeone. 2007. Identification of pancreatic cancer stem cells. Cancer Research 67: 1030–1037.CrossRefPubMedGoogle Scholar
  47. Li, R., Z.L. Hu, S.Y. Sun, Z.G. Chen, T.K. Owonikoko, G.L. Sica, S.S. Ramalingam, W.J. Curran, F.R. Khuri, and X.M. Deng. 2013. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Molecular Cancer Therapeutics 12: 2200–2212.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Li, Y., P.K. Li, M.J. Roberts, R.C. Arend, R.S. Samant, and D.J. Buchsbaum. 2014. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Letters 349: 8–14.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Liu, P.P., J. Liao, Z.J. Tang, W.J. Wu, J. Yang, Z.L. Zeng, Y. Hu, P. Wang, H.Q. Ju, R.H. Xu, and P. Huang. 2014. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death and Differentiation 21: 124–135.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Liu, S., G. Dontu, I.D. Mantle, S. Patel, N.S. Ahn, K.W. Jackson, P. Suri, and M.S. Wicha. 2006. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research 66: 6063–6071.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Lonardo, E., M. Cioffi, P. Sancho, Y. Sanchez-Ripoll, S.M. Trabulo, J. Dorado, A. Balic, M. Hidalgo, and C. Heeschen. 2013. Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells. PLoS One 8: e76518.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Lu, W., C. Lin, M.J. Roberts, W.R. Waud, G.A. Piazza, and Y. Li. 2011. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PLoS One 6: e29290.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Lucis, O.J. 1983. The status of metformin in Canada. Canadian Medical Association Journal 128: 24–26.PubMedCentralPubMedGoogle Scholar
  54. Ma, I., and A.L. Allan. 2011. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews and Reports 7: 292–306.CrossRefPubMedGoogle Scholar
  55. Madiraju, A.K., D.M. Erion, Y. Rahimi, X.M. Zhang, D.T. Braddock, R.A. Albright, B.J. Prigaro, J.L. Wood, S. Bhanot, M.J. MacDonald, M.J. Jurczak, J.P. Camporez, H.Y. Lee, G.W. Cline, V.T. Samuel, R.G. Kibbey, and G.I. Shulman. 2014. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510: 542–546.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Mani, S.A., W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, and R.A. Weinberg. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Mei, F., S.P. Fancy, Y.A. Shen, J. Niu, C. Zhao, B. Presley, E. Miao, S. Lee, S.R. Mayoral, S.A. Redmond, A. Etxeberria, L. Xiao, R.J. Franklin, A. Green, S.L. Hauser, and J.R. Chan. 2014. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Medicine 20: 954–960.CrossRefPubMedGoogle Scholar
  58. Meinao, I., E. Sato, L. Andrade, M. Ferraz, and E. Atra. 1996. Controlled trial with chloroquine diphosphate in systemic lupus erythematosus. Lupus 5: 237–241.CrossRefPubMedGoogle Scholar
  59. Michor, F., T.P. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C.L. Sawyers, and M.A. Nowak. 2005. Dynamics of chronic myeloid leukaemia. Nature 435: 1267–1270.CrossRefPubMedGoogle Scholar
  60. Mizushima, T. 2011. Drug discovery and development focusing on existing medicines: Drug re-profiling strategy. Journal of Biochemistry 149: 499–505.CrossRefPubMedGoogle Scholar
  61. O’Brien, C.A., A. Pollett, S. Gallinger, and J.E. Dick. 2006. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110.CrossRefPubMedGoogle Scholar
  62. Oktem, G., O. Sercan, U. Guven, R. Uslu, A. Uysal, G. Goksel, S. Ayla, and A. Bilir. 2014. Cancer stem cell differentiation: TGFβ1 and versican may trigger molecules for the organization of tumor spheroids. Oncology Reports 32: 641–649.PubMedGoogle Scholar
  63. Osada, T., M. Chen, X.Y. Yang, I. Spasojevic, J.B. Vandeusen, D. Hsu, B.M. Clary, T.M. Clay, W. Chen, M.A. Morse, and H.K. Lyerly. 2011. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Research 71: 4172–4182.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Owen, M.R., E. Doran, and A.P. Halestrap. 2000. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochemical Journal 348: 607–614.PubMedCentralCrossRefPubMedGoogle Scholar
  65. Pearson, R.D., and E.L. Hewlett. 1985. Niclosamide therapy for tapeworm infections. Annals of Internal Medicine 102: 550–551.CrossRefPubMedGoogle Scholar
  66. Prince, M., R. Sivanandan, A. Kaczorowski, G. Wolf, M. Kaplan, P. Dalerba, I. Weissman, M. Clarke, L. Ailles. 2007. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences USA 104: 973–978.Google Scholar
  67. Ren, X.M., L. Duan, Q.A. He, Z. Zhang, Y. Zhou, D.H. Wu, J.X. Pan, D.Q. Pei, and K. Ding. 2010. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Medicinal Chemistry Letters 1: 454–459.PubMedCentralCrossRefPubMedGoogle Scholar
  68. Ricci-Vitiani, L., D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, and R. De Maria. 2006. Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115.CrossRefPubMedGoogle Scholar
  69. Robinson, T.J., M. Pai, J.C. Liu, F. Vizeacoumar, T. Sun, S.E. Egan, A. Datti, J. Huang, and E. Zacksenhaus. 2013. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells Interaction with IQ motif-containing factors. Cell Cycle 12: 3013–3024.PubMedCentralCrossRefPubMedGoogle Scholar
  70. Rosen, J.M., and C.T. Jordan. 2009. The increasing complexity of the cancer stem cell paradigm. Science 324: 1670–1673.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Sabet, M.N., A. Rakhshan, E. Erfani, and Z. Madjd. 2010. Co-expression of putative cancer stem cell markers, CD133 and Nestin, in skin tumors. Asian Pacific Journal of Cancer Prevention 15: 8161–8169.Google Scholar
  72. Schatton, T., G.F. Murphy, N.Y. Frank, K. Yamaura, A.M. Waaga-Gasser, M. Gasser, Q. Zhan, S. Jordan, L.M. Duncan, C. Weishaupt, R.C. Fuhlbrigge, T.S. Kupper, M.H. Sayegh, and M.H. Frankz. 2008. Identification of cells initiating human melanomas. Nature 451: 345–349.Google Scholar
  73. Shaw, R.J., K.A. Lamia, D. Vasquez, S.H. Koo, N. Bardeesy, R.A. Depinho, M. Montminy, and L.C. Cantley. 2005. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310: 1642–1646.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Shim, J.S., Y. Matsui, S. Bhat, B.A. Nacev, J. Xu, H.E. Bhang, S. Dhara, K.C. Han, C.R. Chong, M.G. Pomper, A. So, and J.O. Liu. 2010. Effect of nitroxoline on angiogenesis and growth of human bladder cancer. Journal of the National Cancer Institute 102: 1855–1873.PubMedCentralCrossRefPubMedGoogle Scholar
  75. Shim, J.S., R. Rao, K. Beebe, L. Neckers, I. Han, R. Nahta, and J.O. Liu. 2012. Selective inhibition of HER2-positive breast cancer cells by the HIV protease inhibitor nelfinavir. Journal of the National Cancer Institute 104: 1576–1590.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Siegel, R., J.M. Ma, Z.H. Zou, and A. Jemal. 2014. Cancer statistics, 2014. CA: A Cancer Journal for Clinicians 64: 9–29.Google Scholar
  77. Singh, S.K., C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, and P.B. Dirks. 2004. Identification of human brain tumour initiating cells. Nature 432: 396–401.CrossRefPubMedGoogle Scholar
  78. Solomon, V.R., and H. Lee. 2009. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. European Journal of Pharmacology 625: 220–233.CrossRefPubMedGoogle Scholar
  79. Spangrude, G.J., S. Heimfeld, and I.L. Weissman. 1988. Purification and characterization of mouse hematopoietic stem cells. Science 241: 58–62.CrossRefPubMedGoogle Scholar
  80. Story, P., and A. Doube. 2004. A case of human poisoning by salinomycin, an agricultural antibiotic. New Zealand Medical Journal 117: U799.PubMedGoogle Scholar
  81. Strittmatter, S.M. 2014. Overcoming drug development bottlenecks with repurposing: Old drugs learn new tricks. Nature Medicine 20: 590–591.PubMedCentralCrossRefPubMedGoogle Scholar
  82. Tirino, V., V. Desiderio, F. Paino, G. Papaccio, and M. De Rosa. 2012. Methods for cancer stem cell detection and isolation. Methods in Molecular Biology 879: 513–529.CrossRefPubMedGoogle Scholar
  83. Tseng, C.N., Y.R. Hong, H.W. Chang, T.J. Yu, T.W. Hung, M.F. Hou, S.S. Yuan, C.L. Cho, C.T. Liu, C.C. Chiu, and C.J. Huang. 2014. Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells. Molecules 19: 17464–17477.Google Scholar
  84. Vinogradov, S., and X. Wei. 2012. Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine (London) 7: 597–615.PubMedCentralCrossRefGoogle Scholar
  85. Visvader, J.E., and G.J. Lindeman. 2008. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews Cancer 8: 755–768.CrossRefPubMedGoogle Scholar
  86. Wang, A.M., H.H. Ku, Y.C. Liang, Y.C. Chen, Y.M. Hwu, and T.S. Yeh. 2009. The autonomous Notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in k562 cells. Journal of Cellular Biochemistry 106: 682–692.CrossRefPubMedGoogle Scholar
  87. Wang, Y.C., T.K. Chao, C.C. Chang, Y.T. Yo, M.H. Yu, and H.C. Lai. 2013. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS One 8: e74538.PubMedCentralCrossRefPubMedGoogle Scholar
  88. Weiswald, L.B., D. Bellet, and V. Dangles-Marie. 2015. Spherical cancer models in tumor biology. Neoplasia 17: 1–15.PubMedCentralCrossRefPubMedGoogle Scholar
  89. Wieland, A., D. Trageser, S. Gogolok, R. Reinartz, H. Hofer, M. Keller, A. Leinhaas, R. Schelle, S. Normann, L. Klaas, A. Waha, P. Koch, R. Fimmers, T. Pietsch, A.T. Yachnis, D.W. Pincus, D.A. Steindler, O. Brustle, M. Simon, M. Glas, and B. Scheffler. 2013. Anticancer effects of niclosamide in human glioblastoma. Clinical Cancer Research 19: 4124–4136.CrossRefPubMedGoogle Scholar
  90. Xu, J., Y. Dang, Y.R. Ren, and J.O. Liu. 2010. Cholesterol trafficking is required for mTOR activation in endothelial cells. Proceedings of the National Academy of Sciences USA 107: 4764–4769.CrossRefGoogle Scholar
  91. Yang, C.H., H.L. Wang, Y.S. Lin, K.P. Kumar, H.C. Lin, C.J. Chang, C.C. Lu, T.T. Huang, J. Martel, D.M. Ojcius, Y.S. Chang, J.D. Young, and H.C. Lai. 2014. Identification of CD24 as a cancer stem cell marker in human nasopharyngeal carcinoma. PLoS ONE 9: e99412.Google Scholar
  92. Yang, Z.F., D.W. Ho, M.N. Ng, C.K. Lau, W.C. Yu, P. Ngai, P.W. Chu, C.T. Lam, R.T. Poon, and S.T. Fan. 2008. Significance of CD90(+) cancer stem cells in human liver cancer. Cancer Cell 13: 153–166.Google Scholar
  93. Yin, B., Y. Zeng, G. Liu, X.T. Wang, P. Wang, and Y.S. Song. 2014. MAGE-A3 is highly expressed in a cancer stem cell-like side population of bladder cancer cells. International Journal of Clinical and Experimental Pathology 7: 2934–2941.Google Scholar
  94. Yo, Y.T., Y.W. Lin, Y.C. Wang, C. Balch, R.L. Huang, M.W. Chan, H.K. Sytwu, C.K. Chen, C.C. Chang, and K.P. Nephew. 2012. Growth inhibition of ovarian tumor–initiating cells by niclosamide. Molecular Cancer Therapeutics 11: 1703–1712.CrossRefPubMedGoogle Scholar
  95. You, S., R. Li, D. Park, M. Xie, G.L. Sica, Y. Cao, Z.Q. Xiao, and X. Deng. 2014. Disruption of STAT3 by niclosamide reverses radioresistance of human lung cancer. Molecular Cancer Therapeutics 13: 606–616.PubMedCentralCrossRefPubMedGoogle Scholar
  96. Zhou, G., R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, and D.E. Moller. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation 108: 1167–1174.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2015

Authors and Affiliations

  1. 1.Faculty of Health SciencesUniversity of MacauMacau, SARChina

Personalised recommendations