Archives of Pharmacal Research

, Volume 38, Issue 11, pp 1992–1998 | Cite as

Development of fluorescent probes that bind and stain amyloid plaques in Alzheimer’s disease

  • Seung-Jin Jung
  • Seung-Hwan Park
  • Eun Je Lee
  • Jeong Hoon Park
  • Young Bae Kong
  • Jong Kook Rho
  • Min Goo Hur
  • Seung Dae Yang
  • Yong Dae Park
Research Article

Abstract

β-amyloid (Aβ) plaques in the brain are composed of Aβ40 and Aβ42 peptides, and are the defining pathological feature of Alzheimer’s disease (AD). Fluorescent probes that can detect Aβ plaques have gained increasing interest as potential tools for in vitro and in vivo monitoring of the progression of AD. In this study, chalcone-mimic fluorescent probe 5 was designed and prepared. Probe 5 exhibited an approximately 50-fold increase in emission intensity after mixing with Aβ42 aggregates, a high affinity for Aβ42 aggregates (KD = 1.59 μM), and reasonable lipophilicity (log P value = 2.55). Probe 5 also exhibited specific staining of Aβ plaques in the transgenic mice (APP/PS1) brain sections. Ex vivo fluorescence imaging of the brain from normal and TG mice revealed that probe 5 was able to penetrate the BBB and stain the Aβ plaques. These results suggest that chalcone-mimic probe 5 possessed the requirements of a fluorescent probe for Aβ plaques and may be useful in AD research.

Keywords

Alzheimer’s disease (AD) Aβ plaques Fluorescent probe Chalcone-mimic probes 

References

  1. Chang, W.M., M. Dakanali, C.C. Capule, C.J. Sigurdson, J. Yang, and E.A. Theodorakis. 2011. ANCA: A family of fluorescent probes that bind and stain amyloid plaques in human tissue. ACS Chemical Neuroscience 2: 249–255.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Higuchi, M., N. Iwata, Y. Matsuba, K. Sato, K. Sasamoto, and T.C. Saido. 2005. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nature Neuroscience 8: 527–533.CrossRefPubMedGoogle Scholar
  3. Hintersteiner, M., A. Enz, P. Frey, A.L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K.H. Wiederhold, and H.U. Gremlich. 2005. In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nature Biotechnology 23: 577–583.CrossRefPubMedGoogle Scholar
  4. Hong, M.C., Y.K. Kim, J.Y. Choi, S.Q. Yang, H. Rhee, Y.H. Ryu, T.H. Choi, G.J. Cheon, G.I. An, H.Y. Kim, Y. Kim, D.J. Kim, J.S. Lee, Y.T. Chang, and K.C. Lee. 2010. Synthesis and evaluation of stilbene derivatives as a potential imaging agent of amyloid plaques. Bioorganic Medicinal Chemistry 18: 7724–7730.CrossRefPubMedGoogle Scholar
  5. Johnson, A.E., F. Jeppsson, J. Sandell, D. Wensbo, J.A. Neelissen, A. Jureus, P. Strom, H. Norman, L. Farde, and S.P. Svensson. 2009. AZD2184: a radioligand for sensitive detection of beta-amyloid deposits. Journal of Neurochemistry 108: 1177–1186.CrossRefPubMedGoogle Scholar
  6. Kinger, M., Y.D. Park, J.H. Park, M.G. Hur, H.J. Jeong, S.J. Park, W.S. Lee, S.W. Kim, and S.D. Yang. 2012. Design, synthesis, and anti-influenza viral activities of 1,3-diarylprop-2-en-1-ones: a novel class of neuraminidase inhibitors. Archives of Pharmacal Research 35: 633–638.CrossRefPubMedGoogle Scholar
  7. Klunk, W.E., H. Engler, A. Nordberg, Y. Wang, G. Blomqvist, D.P. Holt, M. Bergstrom, I. Savitcheva, G.F. Huang, S. Estrada, B. Ausen, M.L. Debnath, J. Barletta, J.C. Price, J. Sandell, B.J. Lopresti, A. Wall, P. Koivisto, G. Antoni, C.A. Mathis, and B. Langstrom. 2004. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Annals Neurology 55: 306–319.CrossRefGoogle Scholar
  8. Kobayashi, H., M. Ogawa, R. Alford, P.L. Choyke, and Y. Urano. 2010. New strategies for fluorescent probe design in medical diagnostic imaging. Chemical Reviews 110: 2620–2640.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Li, Q., J.S. Lee, C. Ha, C.B. Park, G. Yang, W.B. Gan, and Y.T. Chang. 2004. Solid-phase synthesis of styryl dyes and their application as amyloid sensors. Angewandte Chemie (International ed. in English) 43: 6331–6335.CrossRefGoogle Scholar
  10. Minati, L., T. Edginton, M.G. Bruzzone, and G. Giaccone. 2009. Current concepts in Alzheimer’s disease: a multidisciplinary review. American Journal Alzheimers Disease and Other Dementias 24: 95–121.CrossRefGoogle Scholar
  11. Nesterov, E.E., J. Skoch, B.T. Hyman, W.E. Klunk, B.J. Bacskai, and T.M. Swager. 2005. In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angewandte Chemie (International ed. in English) 44: 5452–5456.CrossRefGoogle Scholar
  12. Newberg, A.B., N.A. Wintering, K. Plossl, J. Hochold, M.G. Stabin, M. Watson, D. Skovronsky, C.M. Clark, M.P. Kung, and H.F. Kung. 2006. Safety, biodistribution, and dosimetry of 123I-IMPY: a novel amyloid plaque-imaging agent for the diagnosis of Alzheimer’s disease. Journal of Nuclear Medicine 47: 748–754.PubMedGoogle Scholar
  13. Ono, M., M. Hori, M. Haratake, T. Tomiyama, H. Mori, and M. Nakayama. 2007. Structure-activity relationship of chalcones and related derivatives as ligands for detecting of beta-amyloid plaques in the brain. Bioorganic & Medicinal Chemistry 15: 6388–6396.CrossRefGoogle Scholar
  14. Ono, M., R. Watanabe, H. Kawashima, Y. Cheng, H. Kimura, H. Watanabe, M. Haratake, H. Saji, and M. Nakayama. 2009. Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging of beta-amyloid plaques in Alzheimer’s disease. Journal of Medicinal Chemistry 52: 6394–6401.CrossRefPubMedGoogle Scholar
  15. Park, Y.D., J.H. Park, M.G. Hur, S.W. Kim, J.J. Min, S.H. Park, Y.J. Yoo, Y.J. Yoon, and S.D. Yang. 2012. Fluorescent 2-styrylpyridazin-3(2H)-one derivatives as probes targeting amyloid-beta plaques in Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters 22: 4106–4110.CrossRefGoogle Scholar
  16. Ran, C., X. Xu, S.B. Raymond, B.J. Ferrara, K. Neal, B.J. Bacskai, Z. Medarova, and A. Moore. 2009. Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits. Journal of the American Chemical Society 131: 15257–15261.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Raymond, S.B., J. Skoch, I.D. Hills, E.E. Nesterov, T.M. Swager, and B.J. Bacskai. 2008. Smart optical probes for near-infrared fluorescence imaging of Alzheimer’s disease pathology. European Journal of Nuclear Medicine and Molecular Imaging 35(1): S93–S98.CrossRefPubMedGoogle Scholar
  18. Selkoe, D.J. 2001. Alzheimer’s disease: genes, proteins, and therapy. Physiological Reviews 81: 741–766.PubMedGoogle Scholar
  19. Sutharsan, J., M. Dakanali, C.C. Capule, M.A. Haidekker, J. Yang, and E.A. Theodorakis. 2010. Rational design of amyloid binding agents based on the molecular rotor motif. ChemMedChem 5: 56–60.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2015

Authors and Affiliations

  • Seung-Jin Jung
    • 1
  • Seung-Hwan Park
    • 2
  • Eun Je Lee
    • 1
  • Jeong Hoon Park
    • 1
  • Young Bae Kong
    • 1
  • Jong Kook Rho
    • 1
  • Min Goo Hur
    • 1
  • Seung Dae Yang
    • 1
  • Yong Dae Park
    • 1
    • 2
  1. 1.Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongupRepublic of Korea
  2. 2.Department of Nuclear MedicineChonnam National University Hwasun HospitalHwasunRepublic of Korea

Personalised recommendations