Skip to main content
Log in

Effect of N-terminal truncation on antibacterial activity, cytotoxicity and membrane perturbation activity of Cc-CATH3

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

A series of amino-terminal truncated analogues of quail antimicrobial peptide Cc-CATH3(1-29) were created and examined antibacterial activity against Gram-positive bacteria, cytotoxicity against mouse fibroblast cell line, and membrane perturbation activity against various membrane models. Parent peptide Cc-CATH3(1-29) and the first four-residue truncated peptide Cc-CATH3(5-29) were active in all tested experiments. In contrast, the eight- and twelve-residue truncated variants Cc-CATH3(9-29) and Cc-CATH3(13-29) appeared to have lost activities. Cc-CATH3(1-29) and Cc-CATH3(5-29) possessed antibacterial activity with minimum inhibitory concentrations of 2–4 and 1–2 µM, respectively. For cytotoxicity, Cc-CATH3(1-29) and Cc-CATH3(5-29) displayed cytotoxicity with the IC50 values of 9.33 and 4.93 μM, respectively. Cc-CATH3(5-29) induced greater liposome membranes disruption than Cc-CATH3(1-29) regardless of lipid type and composition. The leakage results of Cc-CATH3(1-29) share a similar trend with that in Cc-CATH3(5-29); they exhibit no preferential binding to anionic phospholipids. In conclusion, the results suggested that the first four residues at the N-terminus “RVRR” is not essential for presenting all test activities. In contrast, residues five to eight of “FWPL” are necessary as the exclusion of this short motif in Cc-CATH3(9-29) and Cc-CATH3(13-29) leads to a loss of activities. This study will be beneficial for further design and development of Cc-CATH3 to be novel antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Brogden, K.A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 3: 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Dürr, U.H., U.S. Sudheendra, and A. Ramamoorthy. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta 1758: 1408–1425.

    Article  PubMed  Google Scholar 

  • Feng, F., C. Chen, W. Zhu, W. He, H. Guang, Z. Li, D. Wang, J. Liu, M. Chen, Y. Wang, and H. Yu. 2011. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc-CATHs, from Coturnix coturnix. FEBS Journal 278: 1573–1584.

    Article  CAS  PubMed  Google Scholar 

  • Gautier, R., D. Douguet, B. Antonny, and G. Drin. 2008. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 24: 2101–2102.

    Article  CAS  PubMed  Google Scholar 

  • Haney, E.F., L.T. Nguyen, D.J. Schibli, and H.J. Vogel. 2012. Design of a novel tryptophan-rich membrane-active antimicrobial peptide from the membrane-proximal region of the HIV glycoprotein, gp41. Beilstein Journal of Organic Chemistry 8: 1172–1184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, H.W. 2006. Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochimica et Biophysica Acta 1758: 1292–1302.

    Article  CAS  PubMed  Google Scholar 

  • Kanthawong, S., J.G. Bolscher, E.C. Veerman, J. van Marle, H.J. de Soet, K. Nazmi, S. Wongratanacheewin, and S. Taweechaisupapong. 2012. Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. International Journal of Antimicrobial Agents 39: 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Y. Li, H. Han, D.W. Miller, and G. Wang. 2006. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. Journal of the American Chemical Society 128: 5776–5785.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, K. 2009. Control of cell selectivity of antimicrobial peptides. Biochimica et Biophysica Acta 1788: 1687–1692.

    Article  CAS  PubMed  Google Scholar 

  • Nell, M.J., G.S. Tjabringa, A.R. Wafelman, R. Verrijk, P.S. Hiemstra, J.W. Drijfhout, and J.J. Grote. 2006. Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and- antimicrobial activities for therapeutic application. Peptides 27: 649–660.

    Article  CAS  PubMed  Google Scholar 

  • Ngamsaithong, N., J. Pimthon, O. Vajragupta, and J. Jittikoon. 2012. Antibacterial activity of Cc-CATH 3 peptide and its N-terminally truncated analogues against Gram-positive and Gram-negative bacteria. The Mahidol University Journal of Pharmaceutical Sciences 39: 1–6.

    CAS  Google Scholar 

  • Nicol, F., S. Nir, and F.C. Jr Szoka. 2000. Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles. Biophysical Journal 78: 818–829.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishizawa, M., and K. Nishizawa. 2010. Curvature-driven lipid sorting: coarse-grained dynamics simulations of a membrane mimicking a hemifusion intermediate. Journal of Biophysical Chemistry 1: 86–95.

    Article  CAS  Google Scholar 

  • Otvos, L., and M. Cudic. 2007. Broth microdilution Antibacterial assay of peptides. Methods in Molecular Biology 386: 309–320.

    CAS  PubMed  Google Scholar 

  • Pompilio, A., M. Scocchi, S. Pomponio, F. Guida, A. Di Primio, E. Fiscarelli, E. Fiscarelli, R. Gennaro, and G. Di Bonaventura. 2011. Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides 32: 1807–1814.

    Article  CAS  PubMed  Google Scholar 

  • Rotem, S., I. Radzishevsky, and A. Mor. 2006. Physicochemical properties that enhance discriminative antibacterial activity of short dermaseptin derivatives. Antimicrobial Agents and Chemotherapy 50: 2666.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta 1462: 55–70.

    Article  CAS  PubMed  Google Scholar 

  • Sieuwerts, A.M., J.G. Klijn, H.A. Peters, and J.A. Foekens. 1995. The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. European Journal of Clinical Chemistry and Clinical Biochemistry 33: 813–823.

    CAS  PubMed  Google Scholar 

  • van Dijk, A., E.M. Molhoek, F.J. Bikke, P.L. Yu, E.J. Veldhuizen, and H.P. Haagsman. 2011. Avian cathelicidins: Paradigms for the development of anti infectives. Veterinary Microbiology 153: 27–36.

    Article  PubMed  Google Scholar 

  • Wei, G., X. Liu, L. Yuan, X.J. Ju, L.Y. Chu, and L. Yang. 2011. Lipid composition influences the membrane-disrupting activity of antimicrobial methacrylate co-polymers. Journal of Biomaterials Science 22: 2041–2061.

    Article  CAS  Google Scholar 

  • Wimley, W.C., and K. Hristova. 2011. Antimicrobial peptides: successes, challenges and unanswered questions. The Journal of Membrane Biology 239: 27–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao, Y., Y. Cai, Y.R. Bommineni, S.C. Fernando, O. Prakash, S.E. Gilliland, and G. Zhang. 2006. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. The Journal of biological chemistry 281: 2858–2867.

    Article  CAS  PubMed  Google Scholar 

  • Yeaman, M.R., and N.Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews 55: 27–55.

    Article  CAS  PubMed  Google Scholar 

  • Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., K. Oglęcka, S. Sandgren, M. Belting, E.K. Esbjörner, B. Nordén, and A. Gräslund. 2010. Dual functions of the human antimicrobial peptide LL-37—Target membrane perturbation and host cell cargo delivery. Biochimica et Biophysica Acta 1798: 2201–2208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the Office of the High Education Commission and Mahidol University under the National Research Universities Initiative.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiraphun Jittikoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jittikoon, J., Ngamsaithong, N., Pimthon, J. et al. Effect of N-terminal truncation on antibacterial activity, cytotoxicity and membrane perturbation activity of Cc-CATH3. Arch. Pharm. Res. 38, 1839–1849 (2015). https://doi.org/10.1007/s12272-015-0600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0600-0

Keywords

Navigation