Skip to main content
Log in

Effects of a novel marine natural product: pyrano indolone alkaloid fibrinolytic compound on thrombolysis and hemorrhagic activities in vitro and in vivo

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Fungi fibrinolytic compound 1 (FGFC1) is a novel marine natural product as a low-weight fibrinolytic pyranoindole molecule, whose thrombolytic effects were evaluated on FITC-fibrin (Fluorescein isothiocyanate, FITC) degradation methods in vitro and on acute pulmonary thromboembolism animal model in vivo. We determined the FGFC1 induced thrombolysis that stems from its fibrin(ogen)olytic activities as measured by fibrin(ogen) degradation products (FDPs) experiment, acute pulmonary thromboembolism animal model experiment, and euglobulin lysis assay. In vitro, measurement of FITC-fibrin degradation revealed that fibrin hydrolysis occurred in a concentration-dependent manner of FGFC1 from 5 to 25 μ mol/L. In vivo test of a classical acute pulmonary thromboembolism model in rat showed that when the injected dose was 5 mg/kg or above, FGFC1 was effective in dissolution of extrinsic FITC-fibrin induced blood clots. Euglobulin lysis time (ELT) in FGFC1-treated rats was shortened 30 s compared with rats in the positive control group, which were injected with clopidogrel sulfate and single-chain urokinase-type plasminogen activator. As compared to the control, FGFC1 (5–25 mg/kg) did not significantly alter the formation of fibrinogen and FDPs in vivo. Our research indicates that FGFC1 presents pharmacodynamic action in both the thrombolysis and the hemolytic procedure, which can be characterized by fibrinogenolysis in blood and FDPs in plasma. In vivo, increasing fibrinolytic doses of FGFC1 from 5 to 25 mg/kg did not induce fibrinogenolysis when compared with control group, this result corresponds to that FGFC1 did not induce the increasing of FDPs (compared with the saline-treated control). It indicates that the FGFC1 may act as a novel thrombolytic agent and represent an effective approach to the treatment of thrombus without significant risk of hemorrhagic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alessi, M., I. Juhan-Vague, P. Declerck, and D. Collen. 1991. Molecular forms of plasminogen activator inhibitor-l (PAI-I) and tissue type plasminogen activator (t-PA) in human plasma. Thrombosis Research 621: 275–285.

    Article  Google Scholar 

  • Bennett, B., A. Croll, K. Ferguson, and N.A. Booth. 1990. Complexing of tissue plasminogen activator with PAI-I z2-macroglobulin, and Cl-inhibitor: Studies in patients with defibrination and a fibrinolytic state after electroshock or complicated labor. Blood 75: 671–676.

    CAS  PubMed  Google Scholar 

  • Califf, R.M., D. Stump, E.J. Topol, and D.B. Mark. 1999. Economic and cost-effective-ness in evaluating the value of cardiovascular therapies. The impact of the cost-effectiveness study of GUSTO-1 on decision making with regard to fibrinolytic therapy. American Heart Journal 137: S90–S93.

    Article  CAS  PubMed  Google Scholar 

  • Chan, F.K., J.Y. Ching, and L.C. Hung. 2005. Clopidogrel versus aspirin and esomeprazole to prevent recurrent ulcer bleeding. The New England Journal of Medicine 352: 238–244.

    Article  CAS  PubMed  Google Scholar 

  • Collen, D., D.C. Stump, and H.K. Gold. 1998. Thrombolytic therapy. Annual Review of Medicine 39: 405–423.

    Article  Google Scholar 

  • Collen, D. 1999. The plasminogen (fibrinolytic) system. Thrombosis and Haemostasis 82: 259–270.

    CAS  PubMed  Google Scholar 

  • Fears, R. 1989. Binding of plasminogen activators to fibrin: Characterization and pharmacological consequences. The Biochemical Journal 261: 313–324.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldhaber, S.Z., and C.G. Elliott. 2003. Acute pulmonary embolism: Part I. Epidemiology, pathophysiology, and diagnosis. Circulation 108: 2726–2729.

    Article  PubMed  Google Scholar 

  • Goodchild, C.S., and M.K. Boylan. 1992. Reversal of streptokinase-induced bleeding with aprotinin for emergency cardiac surgery. Anaesthesia 47: 226–228.

    Article  PubMed  Google Scholar 

  • Guria, K.G. 2012. Instabilities in fibrinolytic regulatory system. Theoretical analysis of blow-up phenomena. Journal of Theoretical Biology 304: 27–38.

    Article  CAS  PubMed  Google Scholar 

  • Hanaway, J., R. Torack, A.P. Fletcher, and W.M. Landau. 1972. Intracranial bleeding associated with urokinase therapy for acute ischemic hemispherical stroke. Stroke 7: 143–146.

    Article  Google Scholar 

  • Hasumi, K., and S. Yamamichi. 2010. Small-molecule modulators of zymogen activation in the fibrinolytic and coagulation systems. The FEBS Journal 277: 3675–3687.

    Article  CAS  PubMed  Google Scholar 

  • Khan, I.A., and R.M. Gowda. 2003. Clinical perspectives and therapeutics of thrombolysis. International Journal of Cardiology 91: 115–127.

    Article  PubMed  Google Scholar 

  • Kowalski, E., M. Kopec, and S. Niewiarowski. 1959. An evaluation of the euglobulin method for the determination of fibrinolysis. Journal of Clinical Pathology 12: 215–218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jankun, J., and E. Skrzypczak-Jankun. 1999. Molecular basis of specific inhibition of urokinase plasminogen activator by amiloride. Cancer Biochemistry Biophysics 17: 109–123.

    CAS  PubMed  Google Scholar 

  • Lottenberg, R., U. Christensen, C.M. Jackson, and P.L. Coleman. 1981. Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates. Methods in Enzymology 80: 341–361.

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane, R.G., and R. Biggs. 1948. Fibrinolysis, its mechanism and significance. Blood 3: 1167–1187.

    CAS  PubMed  Google Scholar 

  • Maggioni, A.P., M.G. Franzosi, E. Santoro, H. White, F. Van de Werf, and G. Tognoni. 1992. The risk of stroke in patients with acute myocardial infarction after thrombolytic and antithrombotic treatment. The New England Journal of Medicine 327: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo, O., D.C. Rijken, and D. Collen. 1981. Thrombolysis by human tissue plasminogen activator and urokinase in rabbits with experimental pulmonary embolus. Nature 291: 590–591.

    Article  CAS  PubMed  Google Scholar 

  • Mine, Y., A.H.K. Wong, and B. Jiang. 2005. Fibrinolytic enzymes in Asian traditional fermented foods. Food Research International 38: 243–250.

    Article  CAS  Google Scholar 

  • Peng, Y., X. Yang, and Y. Zhang. 2005. Microbial fibrinoytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo. Applied Microbiology and Biotechnology 69: 126–132.

    Article  CAS  PubMed  Google Scholar 

  • Ping, L.X., L.X. Wen, and T.Z. Ming. 2001. Improvement and application of the method evaluating thrombolytic effects in rabbit pulmonary embolus model. Pharmaceutical Journal of Chinese People’s Liberation Army 1: 176–183.

    Google Scholar 

  • Qu, J., H. Tian, and W. Wu. 2009. Study on fibrinolytic compound enhancing fibrinolysis in rats. Food Science 23: 65–71.

    Google Scholar 

  • Quach, T., M. Tippens, F. Szlam, R. Van Dyke, J.H. Levy, and M. Csete. 2004. Quantitative assessment of fibrinogen cross-linking by epsilon aminocaproic acid in patients with end-stage liver disease. Liver Transplantation 10: 123–128.

    Article  PubMed  Google Scholar 

  • Rijken, D.C., and H.R. Lijnen. 2009. New insights into the molecular mechanisms of the fibrinolytic system. Journal of Thrombosis and Haemostasis 7: 4–13.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Flores, E., J. Campuzano, D. Aguilar, R. Hernández-Pando, and C. Espitia. 2012. The response of the fibrinolytic system to mycobacteria infection. Tuberculosis 92: 497–504.

    Article  PubMed  Google Scholar 

  • Shetty, S., J. Padijnayayveetil, T. Tucker, D. Stankowska, and S. Idell. 2009. The fibrinolytic system and the regulation of lung epithelial cell proteolysis, signaling, and cellular viability. American Journal of Physiology 295: L967–L975.

    Google Scholar 

  • Shinohara, C., K. Hasumi, W. Hatumi, and A. Endo. 1996. Staplabin, a novel fungal triprenyl phenol which stimulates the binding of plasminogen to fibrin and U937 cells. The Journal of Antibiotics (Tokyo) 49: 961–966.

    Article  CAS  Google Scholar 

  • Smith, A.A., L.J. Jacobson, B.I. Miller, W.E. Hathaway, and M.J. Manco-Johnson. 2003. A new euglobulin clot lysis assay for global fibrinolysis. Thrombosis Research 112: 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, A., S. Mishra, P. Tandon, S. Patel, A.P. Ayala, A.K. Bansal, and H.W. Siesler. 2010. Molecular structure and vibrational spectroscopic analysis of an antiplatelet drug; clopidogrel hydrogen sulphate (form 2)––a combined experimental and quantum chemical approach. Journal of Molecular Structure 964: 88–96.

    Article  CAS  Google Scholar 

  • Su, T., W. Wu, T. Yan, C. Zhang, Q. Zhu, and B. Bao. 2013. Pharmacokinetics and tissue distribution of a novel marine fibrinolytic compound in Wistar rat following intravenous administrations. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Science 942–943C: 77–82.

    Article  Google Scholar 

  • Tachikawa, K., K. Hasumi, and A. Endo. 1997. Enhancement of plasminogen binding to U937 cells and fibrin by complestatin. Thrombosis and Haemostasis 77: 137–142.

    CAS  PubMed  Google Scholar 

  • Thomas, G.R., H. Thibodeaux, C.J. Errett, J.M. Badillo, D.T. Wu, C.J. Refino, B.A. Keyt, and W.F. Bennett. 2004. Limiting systemic plasminogenolysis reduces the the neurotoxicity of tissue plasminogen activator. Blood Flow and Metabolism 24: 945–963.

    Google Scholar 

  • Thorsen, S., and M. Philips. 1984. Isolation of tissue-type plasminogen activator-inhibitor complexes from human plasma. Evidence for a rapid plasminogen activator inhibitor. Biochimica et Biophysica Acta 802: 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Witt, W., B. Baldus, P. Bringmann, and L. Cashion. 1992. Thrombolytic properties of Desmodus rotundus (vampire bat) salivary plasminogen activator in experimental pulmonary embolism in rats. Blood 79: 1213–1217.

    CAS  PubMed  Google Scholar 

  • Wang, X., W. Wu, and L. Sun. 2012. Isolation of fibrinolytic active compound from marine fungi and initial identification of the strain. Chinese Journal of Natural Medicines 24: 57–61.

    CAS  Google Scholar 

  • Wu, J.H., and S.L. Diamond. 1995. A fluorescence quench and dequench assay of fibrinogen polymerization, fibrinogenolysis, or fibrinolysis. Analytical Biochemistry 224: 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Wu, W., and B. Bao. 2005. Study on a novel natural compound enhancing fibrinolysis. Food Science 26: 34–42.

    Google Scholar 

  • Wu, W., Bao, B. 2006. Review of low molecular weight compounds from the microbial metabolites that enhancing fibrinolysis. Journal of Chinese Medicine Research, 6: 1354–1359.

  • Wu, W., K. Hasumi, and H. Peng. 2009. Fibrinolytic compounds isolated from a brown alga, Sargassum fulvellum. Marine Drugs 7: 85–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie, Y., H. He, G. Fan, and Y. Wu. 2012. Determination of porcine fibrinogen in rat and dog plasma after intraperitoneal injection of a porcine-derived fibrin glue by fluorescein-labeled assay method: Comparison with isotope-labeled assay method. Journal of Pharmaceutical and Biomedical Analysis 57: 7–12.

    Article  PubMed  Google Scholar 

  • Zhang, Y., W. Wu, and P. Zhou. 2008. Screening and isolation of fibrinolytic active compound from marine microorganism. Chinese Journal of Marine Drugs 27: 57–63.

    Google Scholar 

Download references

Acknowledgments

This work received financial support from National High Technology Research and Development Program of China (No.2011AA09070109), National Natural Science Foundation of China (No. 81341082), Supported by special funding for the development of science and technology of Shanghai Ocean University and Marine Pharmaceutical-food Science Interdis-ciplinary Project of Shanghai Ocean University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Bao.

Additional information

Ting Yan and Wenhui Wu authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Wu, W., Su, T. et al. Effects of a novel marine natural product: pyrano indolone alkaloid fibrinolytic compound on thrombolysis and hemorrhagic activities in vitro and in vivo. Arch. Pharm. Res. 38, 1530–1540 (2015). https://doi.org/10.1007/s12272-014-0518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0518-y

Keywords

Navigation