Skip to main content

Purification and immobilization of l-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme

Abstract

l-Arginase, hydrolyzing l-arginine to l-ornithine and urea, is a powerful anticancer, l-arginine-depleting agent, against argininosuccinate synthase expressing tumors. Otherwise, the higher antigenicity and lower thermal stability of this enzyme was the main biochemical hurdles. Since, the intrinsic thermal stability of enzymes follow the physiological temperature of their producer, thus, characterization of l-arginase from thermotolerant Penicillium chrysogenum was the objective of this study. l-Arginase (Arg) was purified to its homogeneity from P. chrysogenum by 10.1-fold, with 37.0 kDa under denaturing PAGE, optimum reaction at 50 °C, pH stability (6.8–7.9), with highest molar ratio of constitutional arginine, glutamic acid, lysine and aspartic acid. The purified enzyme was PEGylated and immobilized on chitosan, with 41.9 and 22.1 % yield of immobilization. At 40 °C, the T1/2 value of free-Arg, PEG-Arg and Chit-Arg was 10.4, 15.6, 20.5 h, respectively. The free-Arg and Chit-Arg have a higher affinity to l-arginine (K m 4.8 mM), while, PEG-Arg affinity was decreased by about 3 fold (K m 15.2 mM). The inhibitory constants to the free and PEG-Arg were relatively similar towards HA and PPG. The IC50 for the free enzyme against HEPG-2 and A549 tumor cells was 0.136 and 0.165 U/ml, comparing to 0.232 and 0.496 U/ml for PEG-Arg, respectively. The in vivo T1/2 to the free Arg and PEG-Arg was 16.4 and 20.4 h, respectively as holo-enzyme. The residual l-arginine level upon using free Arg was 156.9 and 144.5 µM, after 6 and 8 h, respectively, regarding to initials at 253.6 µM, while for Peg-Arg the level of l-arginine was nil till 7 h of initial dosing. The titer of IgG was induced by 10–15 % in response to free-Arg after 28 days comparing to IgG titer for PEG-Arg.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Argos, P., M.G. Rossman, U.M. Grau, H. Zuber, G. Frank, and J.D. Tratschin. 1979. Thermal stability and protein structure. Biochemistry 18(25): 5698–5703.

    PubMed  Article  CAS  Google Scholar 

  2. Borkovich, K.A., and R.L. Weiss. 1987. Purification and characterization of arginase from Neurospora crassa. Journal of Biological Chemistry 262(15): 7081–7086.

    PubMed  CAS  Google Scholar 

  3. Borsuk, P., A. Dzikowska, J. Empel, A. Grzelak, R. Grzeskowiak, and P. Weglenski. 1999. Structure of the arginase coding gene and its transcript in Aspergillus nidulans. Acta Biochimica Polonica 46(2): 391–403.

    PubMed  CAS  Google Scholar 

  4. Boutin, J.P. 1982. Purification, properties and subunit structure of arginase from Iris bulbs. European Journal of Biochemistry 127(2): 237–243.

    PubMed  Article  CAS  Google Scholar 

  5. Cavanaugh, P.G., and G.L. Nicolson. 2000. Partial purification of a liver-derived tumor cell growth inhibitor that differentially inhibits poorly-liver metastasizing cell lines: Identification as an active subunit of arginase. Clinical & Experimental Metastasis 18(6): 509–518.

    Article  CAS  Google Scholar 

  6. Cheng, P.N., T.L. Lam, W.M. Lam, S.M. Tsui, A.W. Cheng, W.H. Lo, and Y.C. Leung. 2007. Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Research 67(1): 309–317.

    PubMed  Article  CAS  Google Scholar 

  7. Cheng, Y., and W.H. Prusoff. 1973. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical Pharmacology 22(23): 3099–3108.

    PubMed  Article  CAS  Google Scholar 

  8. Currie, G.A., L. Gyure, and L. Cifuentes. 1979. Microenvironmental arginine depletion by macrophages in vivo. British Journal of Cancer 39(6): 613–620.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. Delage, B., D.A. Fennell, L. Nicholson, I. McNeish, N.R. Lemoine, T. Crook, and P.W. Szlosarek. 2010. Argionlinenine deprivation and argininosuccinate synthetase expression in the treatment of cancer. International Journal of Cancer 126(12): 2762–2772.

    CAS  Google Scholar 

  10. Dzikowska, A., J.P. Le Caer, P. Jonczyk, and P. Weglenski. 1994. Purification of arginase from Aspergillus nidulans. Acta Biochimica Polonica 41(4): 467–471.

    PubMed  CAS  Google Scholar 

  11. Edwards, P., J.C. Cendan, D.B. Topping, L.L. Moldawer, S. MacKay, E. Copeland, and D.S. Lind. 1996. Tumor cell nitric oxide inhibits cell growth in vitro, but stimulates tumorigenesis and experimental lung metastasis in vivo. Journal of Surgical Research 63(1): 49–52.

    PubMed  Article  CAS  Google Scholar 

  12. El-Sayed, A.S. 2010. Microbial L-methioninase: Production, molecular characterization, and therapeutic applications. Applied Microbiology and Biotechnology 86(2): 445–467.

    PubMed  Article  CAS  Google Scholar 

  13. El-Sayed, A.S. 2011. Purification and characterization of a new L-methioninase from solid cultures of Aspergillus flavipes. J Microbiol 49(1): 130–140.

    PubMed  Article  CAS  Google Scholar 

  14. El-Sayed, A.S., H. Ibrahim, and M.Z. Sitohy. 2014. Co-immobilization of PEGylated Aspergillus flavipes L-methioninase with glutamate dehydrogenase: A novel catalytically stable anticancer consortium. Enyzme and Microbial Technology 54: 59–69.

    Article  CAS  Google Scholar 

  15. El-Sayed, A.S., S.A. Khalaf, and H.A. Aziz. 2013. Characterization of homocysteine gamma-lyase from submerged and solid cultures of Aspergillus fumigatus ASH (JX006238). Journal of Microbiology and Biotechnology 23(4): 499–510.

    PubMed  Article  CAS  Google Scholar 

  16. El-Sayed, A.S., and A.A. Shindia. 2011. Characterization and immobilization of purified Aspergillus flavipesl-methioninase: Continuous production of methanethiol. Journal of Applied Microbiology 111(1): 54–69.

    PubMed  Article  CAS  Google Scholar 

  17. El-Sayed, A.S., S.A. Shouman, and H.M. Nassrat. 2012. Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes L-methioninase. Enyzme and Microbial Technology 51(4): 200–210.

    Article  CAS  Google Scholar 

  18. Ensor, C.M., F.W. Holtsberg, J.S. Bomalaski, and M.A. Clark. 2002. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Research 62(19): 5443–5450.

    PubMed  CAS  Google Scholar 

  19. Farias-Eisner, R., M.P. Sherman, E. Aeberhard, and G. Chaudhuri. 1994. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc Natl Acad Sci U S A 91(20): 9407–9411.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. Feun, L., and N. Savaraj. 2006. Pegylated arginine deiminase: A novel anticancer enzyme agent. Expert Opinion on Investigational Drugs 15(7): 815–822.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. Gonzalez, G.G., and C.V. Byus. 1991. Effect of dietary arginine restriction upon ornithine and polyamine metabolism during two-stage epidermal carcinogenesis in the mouse. Cancer Research 51(11): 2932–2939.

    PubMed  CAS  Google Scholar 

  22. Green, S.M., E. Eisenstein, P. McPhie, and P. Hensley. 1990. The purification and characterization of arginase from Saccharomyces cerevisiae. Journal of Biological Chemistry 265(3): 1601–1607.

    PubMed  CAS  Google Scholar 

  23. Haki, G.D., and S.K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresource technology 89(1): 17–34.

    PubMed  Article  CAS  Google Scholar 

  24. Hansen, M., and H.H. Hansen. 1989. Tumour markers in the clinical management of patients with small cell lung cancer. European Respiratory Journal 2(8): 700–701.

    PubMed  CAS  Google Scholar 

  25. Hernandez, C.P., K. Morrow, L.A. Lopez-Barcons, J. Zabaleta, R. Sierra, C. Velasco, J. Cole, and P.C. Rodriguez. 2010. Pegylated arginase I: A potential therapeutic approach in T-ALL. Blood 115(25): 5214–5221.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  26. Jenkins, D.C., I.G. Charles, L.L. Thomsen, D.W. Moss, L.S. Holmes, S.A. Baylis, P. Rhodes, K. Westmore, P.C. Emson, and S. Moncada. 1995. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A 92(10): 4392–4396.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  27. Jenkinson, C.P., W.W. Grody, and S.D. Cederbaum. 1996. Comparative properties of arginases. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 114(1): 107–132.

    Article  CAS  Google Scholar 

  28. Kanda, M., K. Ohgishi, T. Hanawa, and Y. Saito. 1997. Arginase of Bacillus brevis Nagano: Purification, properties, and implication in gramicidin S biosynthesis. Archives of Biochemistry and Biophysics 344(1): 37–42.

    PubMed  Article  CAS  Google Scholar 

  29. Kang, J.H., and Y.D. Cho. 1990. Purification and properties of Arginase from Soybean, Glycine max. Axes. Plant Physiol 93(3): 1230–1234.

    Article  CAS  Google Scholar 

  30. Kelly, M.P., A.A. Jungbluth, B.W. Wu, J. Bomalaski, L.J. Old, and G. Ritter. 2012. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. British Journal of Cancer 106(2): 324–332.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  31. Kim, J.E., D.W. Jeong, and H.J. Lee. 2007. Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21. Protein Expression and Purification 53(1): 9–15.

    PubMed  Article  CAS  Google Scholar 

  32. Kotzia, G.A., K. Lappa, and N.E. Labrou. 2007. Tailoring structure-function properties of L-asparaginase: Engineering resistance to trypsin cleavage. Biochemical Journal 404(2): 337–343.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685.

    PubMed  Article  CAS  Google Scholar 

  34. Liu, S., G.G. Pritchard, M.J. Hardman, and G.J. Pilone. 1995. Occurrence of arginine deiminase pathway enzymes in arginine catabolism by wine lactic acid bacteria. Applied and Environment Microbiology 61(1): 310–316.

    CAS  Google Scholar 

  35. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193(1): 265–275.

    PubMed  CAS  Google Scholar 

  36. Maheshwari, R., G. Bharadwaj, and M.K. Bhat. 2000. Thermophilic fungi: Their physiology and enzymes. Microbiology and Molecular Biology Reviews 64(3): 461–488.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. Moore, S., D.H. Spackman, and W.H. Stein. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Fed Proc 17(4): 1107–1115.

    PubMed  CAS  Google Scholar 

  38. Moreno-Vivian, C., G. Soler, and F. Castillo. 1992. Arginine catabolism in the phototrophic bacterium Rhodobacter capsulatus E1F1. Purification and properties of arginase. European Journal of Biochemistry 204(2): 531–537.

    PubMed  Article  CAS  Google Scholar 

  39. Munder, M. 2009. Arginase: An emerging key player in the mammalian immune system. British Journal of Pharmacology 158(3): 638–651.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. Patchett, M.L., R.M. Daniel, and H.W. Morgan. 1991. Characterisation of arginase from the extreme thermophile ‘Bacillus caldovelox’. Biochimica et Biophysica Acta 1077(3): 291–298.

    PubMed  Article  CAS  Google Scholar 

  41. Penninckx, M., J.P. Simon, and J.M. Wiame. 1974. Interaction between arginase and l-ornithine carbamoyltransferase in Saccharomyces cerevisiae. Purification of S. cerevisiae enzymes and evidence that these enzymes as well as rat-liver arginase are trimers. European Journal of Biochemistry 49(2): 429–442.

    PubMed  Article  CAS  Google Scholar 

  42. Philip, R., E. Campbell, and D.N. Wheatley. 2003. Arginine deprivation, growth inhibition and tumour cell death: 2. Enzymatic degradation of arginine in normal and malignant cell cultures. British Journal of Cancer 88(4): 613–623.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  43. Schmidt, M.M., and R. Dringen. 2009. Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front Neuroenergetics 1: 1.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  44. Simon, J.P., and V. Stalon. 1976. Purification and structure of arginase of Bacillus licheniformis. Biochimie 58(11–12): 1419–1421.

    PubMed  CAS  Google Scholar 

  45. Singh, M., E. Silva, S. Schulze, D.A. Sinclair, K.A. Fitzpatrick, and B.M. Honda. 2000. Cloning and characterization of a new theta-class glutathione-S-transferase (GST) gene, gst-3, from Drosophila melanogaster. Gene 247(1–2): 167–173.

    PubMed  Article  CAS  Google Scholar 

  46. Sun, X., Z. Yang, S. Li, Y. Tan, N. Zhang, X. Wang, S. Yagi, T. Yoshioka, A. Takimoto, K. Mitsushima, A. Suginaka, E.P. Frenkel, and R.M. Hoffman. 2003. In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5′-phosphate supplementation. Cancer Research 63(23): 8377–8383.

    PubMed  CAS  Google Scholar 

  47. Viator, R.J., R.F. Rest, E. Hildebrandt, and D.J. McGee. 2008. Characterization of Bacillus anthracis arginase: Effects of pH, temperature, and cell viability on metal preference. BMC Biochemistry 9: 15.

    PubMed  Article  PubMed Central  Google Scholar 

  48. Vieille, C., and G.J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews 65(1): 1–43.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  49. Weickmann, J.L., M.E. Himmel, P.G. Squire, and D.E. Fahrney. 1978. Arginine deiminase from Mycoplasma arthritidis. Properties of the enzyme from log phase cultures. Journal of Biological Chemistry 253(17): 6010–6015.

    PubMed  CAS  Google Scholar 

  50. Wu, G., and S. M. Morris Jr. 1998. Arginine metabolism: Nitric oxide and beyond. Biochemical Journal 336(Pt 1): 1–17.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Yang, Z., J. Wang, Q. Lu, J. Xu, Y. Kobayashi, T. Takakura, A. Takimoto, T. Yoshioka, C. Lian, C. Chen, D. Zhang, Y. Zhang, S. Li, X. Sun, Y. Tan, S. Yagi, E.P. Frenkel, and R.M. Hoffman. 2004a. PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Research 64(18): 6673–6678.

    PubMed  Article  CAS  Google Scholar 

  52. Yang, Z., J. Wang, T. Yoshonlineioka, B. Li, Q. Lu, S. Li, X. Sun, Y. Tan, S. Yagi, E.P. Frenkel, and R.M. Hoffman. 2004b. Pharmacokinetics, methionine depletion, and antigenicity of recombinant methioninase in primates. Clinical Cancer Research 10(6): 2131–2138.

    PubMed  Article  CAS  Google Scholar 

  53. Zhang, J., X. Zhang, C. Wu, D. Lu, G. Guo, X. Mao, Y. Zhang, D.C. Wang, D. Li, and Q. Zou. 2011. Expression, purification and characterization of arginase from Helicobacter pylori in its apo form. PLoS ONE 6(10): e26205.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate the partial financial support by Zagazig University, Egypt, to Ashraf El-Sayed. We gratefully thank Prof. Sadik Esener, Nanoengineering Dep., University of California, San Diego, CA, USA, for his valuable discussion and revision of this work.

Conflict of interest

No conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ashraf S. El-Sayed.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, A.S., Shindia, A.A., Diab, A.A. et al. Purification and immobilization of l-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme. Arch. Pharm. Res. (2014). https://doi.org/10.1007/s12272-014-0498-y

Download citation

Keywords

  • Thermotolerant Penicillium chrysogenum
  • l-Arginase
  • Thermal stability
  • Anticancer
  • Antigenicity