Skip to main content

Structure-based lead discovery for protein kinase C zeta inhibitor design by exploiting kinase–inhibitor complex crystal structure data and potential therapeutics for preterm labour

Abstract

The protein kinase C (PKC) is a family of serine/threonine kinases with a broad range of cellular targets. Members of the PKC family participate at the diverse biological events involved in cellular proliferation, differentiation and survival. The PKC isoform zeta (PKCζ) is an atypical member that has recently been found to play an essential role in promoting human uterine contractility and thus been raised as a new target for treating preterm labour and other tocolytic diseases. In this study, an integrative protocol was described to graft hundreds of inhibitor ligands from their complex crystal structures with cognate kinases into the active pocket of PKCζ and, based on the modeled structures, to evaluate the binding strength of these inhibitors to the non-cognate PKCζ receptor by using a consensus scoring strategy. A total of 32 inhibitors with top score were compiled, and eight out of them were tested for inhibitory potency against PKCζ. Consequently, five compounds, i.e. CDK6 inhibitor fisetin, PIM1 inhibitor myricetin, CDK9 inhibitor flavopiridol and PknB inhibitor mitoxantrone as well as the promiscuous kinase inhibitor staurosporine showed high or moderate inhibitory activity on PKCζ, with IC50 values of 58 ± 9, 1.7 ± 0.4, 108 ± 17, 280 ± 47 and 0.019 ± 0.004 μM, respectively, while other three compounds, including two marketed drugs dasatinib and sunitinib as well as the Rho inhibitor fasudil, have not been detected to possess observable activity. Next, based on the modeled structure data we modified three flavonoid kinase inhibitors, i.e. fisetin, myricetin and flavopiridol, to generate a number of more potential molecular entities, two of which were found to have a moderately improved activity as compared to their parent compounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Azzi, A., D. Boscoboinik, and C. Hensey. 1992. The protein kinase C family. European Journal of Biochemistry 208: 547–557.

    PubMed  Article  CAS  Google Scholar 

  2. Benson, M.L., R.D. Smith, N.A. Khazanov, B. Dimcheff, J. Beaver, P. Dresslar, J. Nerothin, and H.A. Carlson. 2008. Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Research 36: D674–D678.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. Berman, H.M., J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne. 2000. The protein data bank. Nucleic Acids Research 28: 235–242.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  4. Duggan, S.V., T. Lindstrom, T. Iglesias, P.R. Bennett, G.E. Mann, and S.R. Bartlett. 2007. Role of atypical protein kinase C isozymes and NF-kappaB in IL-1beta-induced expression of cyclooxygenase-2 in human myometrial smooth muscle cells. Journal of Cellular Physiology 210: 637–643.

    PubMed  Article  CAS  Google Scholar 

  5. Eldridge, M.D., C.W. Murray, T.R. Auton, G.V. Paolini, and R.P. Mee. 1997. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 11: 425–445.

    PubMed  Article  CAS  Google Scholar 

  6. Eude-Le Parco, I., E. Dallot, and M. Breuiller-Fouché. 2007. Protein kinase C and human uterine contractility. BMC Pregnancy Childbirth 7: S11.

    PubMed  Article  PubMed Central  Google Scholar 

  7. Eude, I., B. Paris, D. Cabrol, F. Ferré, and M. Breuiller-Fouché. 2000. Selective protein kinase C isoforms are involved in endothelin-1-induced human uterine contraction at the end of pregnancy. Biology of Reproduction 63: 1567–1573.

    PubMed  Article  CAS  Google Scholar 

  8. Firestone, S., L.L. Firestone, C. Ferguson, and D. Blanck. 1993. Staurosporine, a protein kinase C inhibitor, decreases the general anesthetic requirement in Rana pipiens tadpoles. Anesthesia Analgesia 77: 1026–1030.

    PubMed  Article  CAS  Google Scholar 

  9. Goldenberg, R.L., J.F. Culhane, J.D. Iams, and R. Romero. 2008. Epidemiology and causes of preterm birth. Lancet 371: 75–84.

    PubMed  Article  Google Scholar 

  10. Goodsell, D.S., and A.J. Olson. 1990. Automated docking of substrates to proteins by simulated annealing. Proteins 8: 195–202.

    PubMed  Article  CAS  Google Scholar 

  11. Huang, S.Y., S.Z. Grinter, and X. Zou. 2010. Scoring functions and their evaluation methods for protein-ligand docking: Recent advances and future directions. Physical Chemistry Chemical Physics 12: 12899–12908.

    PubMed  Article  CAS  Google Scholar 

  12. Heus, R., B.W. Mol, J.J. Erwich, H.P. Geijn, W.J. Gyselaers, M. Hanssens, L. Härmark, C.D. Holsbeke, J.J. Duvekot, F.F. Schobben, H. Wolf, and G.H. Visser. 2009. Adverse drug reactions to tocolytic treatment for preterm labour: Prospective cohort study. British Medical Journal 338: b744.

    PubMed  Article  PubMed Central  Google Scholar 

  13. Kim, B., Y.S. Kim, J. Ahn, J. Kim, S. Cho, K.J. Won, H. Ozaki, H. Karaki, and S.M. Lee. 2003. Conventional-type protein kinase C contributes to phorbol ester-induced inhibition of rat myometrial tension. British Journal of Pharmacology 139: 408–414.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. King, J.V., S.Cole Flenady, and S. Thornton. 2005. Cyclo-oxygenase (COX) inhibitors for treating preterm labour. Cochrane Database of Systematic Reviews 2: CD001992.

  15. Krieger, E., G. Koraimann, and G. Vriend. 2002. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins 47: 393–402.

    PubMed  Article  CAS  Google Scholar 

  16. Liu, T., Y. Lin, X. Wen, R.N. Jorrisen, and M.K. Gilson. 2007. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Research 35: D198–D201.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  17. Meng, E.C., B.K. Shoichet, and I.D. Kuntz. 1992. Automated docking with grid-based energy evaluation. Journal of Computational Chemistry 13: 505–524.

    Article  CAS  Google Scholar 

  18. Morrison, J.J., S.R. Dearn, S.K. Smith, and A. Ahmed. 1996. Activation of protein kinase C is required for oxytocin-induced contractility in human pregnant myometrium. Human Reproduction 11: 2285–2290.

    PubMed  Article  CAS  Google Scholar 

  19. Papatsonis, D.V., ColeS. Flenady, and H. Liley. 2005. Oxytocin receptor antagonists for inhibiting preterm labour. Cochrane Database of Systematic Reviews 3: CD004452.

  20. Patel, R.Y., and R.J. Doerksen. 2010. Protein kinase-inhibitor database: structural variability of and inhibitor interactions with the protein kinase P-loop. Journal of Proteome Research 9: 4433–4442.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. Steer, P. 2005. The epidemiology of preterm labour. British Journal of Obstetrics and Gynaecology 112: 1–3.

    PubMed  Article  Google Scholar 

  22. Stierand, K., P. Maaß, and M. Rarey. 2006. Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics 22: 1710–1716.

    PubMed  Article  CAS  Google Scholar 

  23. Tan, T.C., K. Devendra, L.K. Tan, and H.K. Tan. 2006. Tocolytic treatment for the management of preterm labour: A systematic review. Singapore Medical Journal 47: 361–366.

    PubMed  CAS  Google Scholar 

  24. Velec, H.F., H. Gohlke, and G. Klebe. 2005. DrugScore (CSD)—knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. Journal of Medicinal Chemistry 48: 6296–6303.

    PubMed  Article  CAS  Google Scholar 

  25. Vriend, G. 1990. WHAT IF: A molecular modeling and drug design program. Journal of Molecular Graphics 8: 52–56.

    PubMed  Article  CAS  Google Scholar 

  26. Wang, B., W. Shen, H. Yang, J. Shen, and T. Sun. 2014. Targeting EGFR mutants with non-cognate kinase inhibitors in non-small cell lung cancer. Medicinal Chemistry Research 23: 4510–4530.

    Article  CAS  Google Scholar 

  27. Wang, R., L. Lai, and S. Wang. 2002. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design 16: 11–26.

    PubMed  Article  CAS  Google Scholar 

  28. Wang, R., Y. Lu, and S. Wang. 2003. Comparative evaluation of 11 scoring functions for molecular docking. Journal of Medicinal Chemistry 46: 2287–2303.

    PubMed  Article  CAS  Google Scholar 

  29. Wang, R., X. Fang, Y. Lu, C.Y. Yang, and S. Wang. 2005. The PDBbind database: Methodologies and updates. Journal of Medicinal Chemistry 48: 4111–4119.

    PubMed  Article  CAS  Google Scholar 

  30. Word, J.M., S.C. Lovell, and J.S. Richardson. 1999. Asparagine and glutamine: Using hydrogen atom contacts in the choice of side chain amide orientation. Journal of Molecular Biology 285: 1735–1747.

    PubMed  Article  CAS  Google Scholar 

  31. Yuan, L., J.S. Seo, N.S. Kang, S. Keinan, S.E. Steele, G.A. Michelotti, W.C. Wetsel, D.N. Beratan, Y.D. Gong, T.H. Lee, and J. Hong. 2009. Identification of 3-hydroxy-2-(3-hydroxyphenyl)-4H-1-benzopyran-4-ones as isoform-selective PKC-zeta inhibitors and potential therapeutics for psychostimulant abuse. Molecular BioSystems 5: 927–930.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. Zhao, J., and C. Zhou. 2014. Virtual screening of protein kinase C inhibitors from natural product library to modulate general anaesthetic effects. Natural Product Research 28: 1–3.

    Article  Google Scholar 

  33. Zhang, C., S. Liu, Q. Zhu, and Y. Zhou. 2005. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. Journal of Medicinal Chemistry 48: 2325–2335.

    PubMed  Article  CAS  Google Scholar 

  34. Zhou, P., J. Zou, F. Tian, and Z. Shang. 2009. Fluorine bonding—how does it work in protein-ligand interactions? Journal of Chemical Information and Modeling 49: 2344–2355.

    PubMed  Article  CAS  Google Scholar 

  35. Zhou, P., J. Huang, and F. Tian. 2012. Specific noncovalent interactions at protein-ligand interface: Implications for rational drug design. Current Medicinal Chemistry 19: 226–238.

    PubMed  Article  CAS  Google Scholar 

  36. Zhou, P., C. Wang, Y. Ren, C. Yang, and F. Tian. 2013. Computational peptidology: A new and promising approach to therapeutic peptide design. Current Medicinal Chemistry 20: 1985–1996.

    PubMed  Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shao, QC., Zhang, CJ. & Li, J. Structure-based lead discovery for protein kinase C zeta inhibitor design by exploiting kinase–inhibitor complex crystal structure data and potential therapeutics for preterm labour. Arch. Pharm. Res. (2014). https://doi.org/10.1007/s12272-014-0495-1

Download citation

Keywords

  • Protein kinase C
  • Kinase inhibitor
  • Preterm labour
  • Tocolytic agent