Advertisement

Archives of Pharmacal Research

, Volume 38, Issue 4, pp 556–565 | Cite as

Propofol treatment modulates neurite extension regulated by immunologically challenged rat primary astrocytes: a possible role of PAI-1

  • Hyun Myung Ko
  • So Hyun Joo
  • Sung Hoon Lee
  • Hee Jin Kim
  • Seung-Hyun Lee
  • Jae Hoon Cheong
  • Jong Hoon Ryu
  • Jeong Min Kim
  • Bon-Nyeo KooEmail author
  • Chan Young ShinEmail author
Research Article

Abstract

Propofol, a widely used anesthetic, regulates neurological processes including neurotoxicity, neuroprotection, glial activation, synaptic plasticity and neuronal maturation. Tissue plasminogen activator/tissue plasminogen activator inhibitor-1 (tPA/PAI-1) in CNS acts as a neuromodulator regulating synaptic plasticity, neurite outgrowth, seizure spreading and cell survival. Here, we investigated the effects of propofol on tPA/PAI-1 system using cultured neurons and astrocytes and their role in the regulation of neurite extension. Cultured rat primary astrocytes were treated with propofol (1–10 µM) and LPS (10 ng/ml). The expression of functional tPA/PAI-1 was examined by casein zymography, Western blot and RT-PCR. Alternatively, culture supernatants were added to cultured rat primary neuron to investigate the effects on neurite extension. Propofol alone did not affect tPA activity in rat primary cortical neuron. Similarly, propofol alone changed neither tPA nor PAI-1 activity in rat primary astrocytes. In immunologically challenged situation using LPS, propofol synergistically increased expression of PAI-1 in rat primary astrocytes without affecting tPA expression in a manner dependent on MAPKs activation. Increased expression of PAI-1 reduced tPA activity in LPS plus propofol-treated rat primary astrocytes. Consistent with the critical role of tPA activity in the regulation of neurite extension (Cho et al. 2013), the diminished tPA activity in astrocyte culture supernatants resulted in decreased neurite extension when administered to cultured rat primary cortical neuron. The results from the present study suggest that propofol, especially in immunologically-challenged situation, dysregulates tPA/PAI-1 system in brain. Whether the dysregulated tPA/PAI-1 activity adversely affects neural differentiation as well as regeneration of neuron in vivo should be empirically determined in the future.

Keywords

Propofol tPA PAI-1 Neurite extension 

Notes

Acknowledgments

This work was supported by a grant of the Korean Health Technology R&D Project, Ministry of health & welfare, Republic of Korea (No. A120029) and was also supported in part by the Faculty Research assistance Program of Yonsei University College of Medicine for 2013 (6-2013-0145).

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

12272_2014_442_MOESM1_ESM.tif (390 kb)
Supplementary material 1 (TIFF 389 kb)
12272_2014_442_MOESM2_ESM.tif (322 kb)
Supplementary material 2 (TIFF 321 kb)
12272_2014_442_MOESM3_ESM.tif (315 kb)
Supplementary material 3 (TIFF 314 kb)
12272_2014_442_MOESM4_ESM.tif (315 kb)
Supplementary material 4 (TIFF 314 kb)

References

  1. Al-Jahdari, W.S., S. Saito, T. Nakano, and F. Goto. 2006. Propofol induces growth cone collapse and neurite retractions in chick explant culture. Canadian Journal of Anaesthesia = Journal Canadien D’anesthesie 53(11): 1078–1085.CrossRefPubMedGoogle Scholar
  2. Bayona, N.A., A.W. Gelb, Z. Jiang, J.X. Wilson, B.L. Urquhart, and D.F. Cechetto. 2004. Propofol neuroprotection in cerebral ischemia and its effects on low-molecular-weight antioxidants and skilled motor tasks. Anesthesiology 100(5): 1151–1159.CrossRefPubMedGoogle Scholar
  3. Benarroch, E.E. 2007. Tissue plasminogen activator: beyond thrombolysis. Neurology 69(8): 799–802. doi: 10.1212/01.wnl.0000269668.08747.78.CrossRefPubMedGoogle Scholar
  4. Briner, A., I. Nikonenko, M. De Roo, A. Dayer, D. Muller, and L. Vutskits. 2011. Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115(2): 282–293. doi: 10.1097/ALN.0b013e318221fbbd.CrossRefPubMedGoogle Scholar
  5. Cho, K.S., K.J. Kwon, C.S. Choi, et al. 2013. Valproic acid induces astrocyte-dependent neurite outgrowth from cultured rat primary cortical neuron via modulation of tPA/PAI-1 activity. Glia 61(5): 694–709. doi: 10.1002/glia.22463.CrossRefPubMedGoogle Scholar
  6. Da Silva, J., B. Pierrat, J.L. Mary, and W. Lesslauer. 1997. Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. The Journal of Biological Chemistry 272(45): 28373–28380.CrossRefPubMedGoogle Scholar
  7. Dennler, S., S. Itoh, D. Vivien, P. ten Dijke, S. Huet, and J.M. Gauthier. 1998. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. The EMBO Journal 17(11): 3091–3100. doi: 10.1093/emboj/17.11.3091.CrossRefPubMedCentralPubMedGoogle Scholar
  8. Docagne, F., O. Nicole, H.H. Marti, E.T. MacKenzie, A. Buisson, and D. Vivien. 1999. Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 13(11): 1315–1324.Google Scholar
  9. Earley, P.H., and T. Finver. 2013. Addiction to propofol: a study of 22 treatment cases. Journal of Addiction Medicine 7(3): 169–176. doi: 10.1097/ADM.0b013e3182872901.CrossRefPubMedGoogle Scholar
  10. Fibuch, E.E., and J.Q. Wang. 2007. Inhibition of the MAPK/ERK cascade: a potential transcription-dependent mechanism for the amnesic effect of anesthetic propofol. Neuroscience Bulletin 23(2): 119–124. doi: 10.1007/s12264-007-0017-y.CrossRefPubMedGoogle Scholar
  11. Fraser, D.D., L.A. Mudrick-Donnon, and B.A. MacVicar. 1994. Astrocytic GABA receptors. Glia 11(2): 83–93. doi: 10.1002/glia.440110203.CrossRefPubMedGoogle Scholar
  12. Gabriel, C., C. Ali, S. Lesne, et al. 2003. Transforming growth factor alpha-induced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 17(2): 277–279. doi: 10.1096/fj.02-0403fje.Google Scholar
  13. Gorina, R., M. Font-Nieves, L. Marquez-Kisinousky, T. Santalucia, and A.M. Planas. 2011. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59(2): 242–255. doi: 10.1002/glia.21094.CrossRefPubMedGoogle Scholar
  14. Gravanis, I., and S.E. Tsirka. 2005. Tissue plasminogen activator and glial function. Glia 49(2): 177–183. doi: 10.1002/glia.20115.CrossRefPubMedGoogle Scholar
  15. Gu, J., M. Chi, X. Sun, et al. 2013. Propofol-induced protection of SH-SY5Y cells against hydrogen peroxide is associated with the HO-1 via the ERK pathway. International Journal of Medical Sciences 10(5): 599–606. doi: 10.7150/ijms.5151.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Gui, B., M. Su, J. Chen, L. Jin, R. Wan, and Y. Qian. 2012. Neuroprotective effects of pretreatment with propofol in LPS-induced BV-2 microglia cells: role of TLR4 and GSK-3beta. Inflammation 35(5): 1632–1640. doi: 10.1007/s10753-012-9478-x.CrossRefPubMedGoogle Scholar
  17. Jensen, A.G., M. Lindroth, A. Sjolander, and C. Eintrei. 1994. Propofol induces changes in the cytosolic free calcium concentration and the cytoskeletal organization of cultured human glial cells and primary embryonic rat brain cells. Anesthesiology 81(5): 1220–1229.CrossRefPubMedGoogle Scholar
  18. Kidambi, S., J. Yarmush, Y. Berdichevsky, S. Kamath, W. Fong, and J. Schianodicola. 2010. Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Research Notes 3: 201. doi: 10.1186/1756-0500-3-201.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Kim, J.W., S.H. Lee, H.M. Ko, et al. 2011. Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochemistry International 58(3): 423–433. doi: 10.1016/j.neuint.2010.12.020.CrossRefPubMedGoogle Scholar
  20. Ko, H.M., S. Yeon Kim, S.H. Joo, et al. 2013. Synergistic activation of lipopolysaccharide-stimulated glial cells by propofol. Biochemical and Biophysical Research Communications. doi: 10.1016/j.bbrc.2013.07.089.Google Scholar
  21. Lee, W.J., C.Y. Shin, B.K. Yoo, et al. 2003. Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia 41(1): 15–24. doi: 10.1002/glia.10131.CrossRefPubMedGoogle Scholar
  22. Li, C.H., R.P. Lee, Y.L. Lin, et al. 2010. The treatment of propofol induced the TGF-beta1 expression in human endothelial cells to suppress endocytosis activities of monocytes. Cytokine 52(3): 203–209. doi: 10.1016/j.cyto.2010.08.001.CrossRefPubMedGoogle Scholar
  23. Melchor, J.P., and S. Strickland. 2005. Tissue plasminogen activator in central nervous system physiology and pathology. Thrombosis and Haemostasis 93(4): 655–660. doi: 10.1267/THRO05040655.PubMedCentralPubMedGoogle Scholar
  24. Mintz, C.D., S.C. Smith, K.M. Barrett, and D.L. Benson. 2012. Anesthetics interfere with the polarization of developing cortical neurons. Journal of Neurosurgical Anesthesiology 24(4): 368–375. doi: 10.1097/ANA.0b013e31826a03a6.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Oscarsson, A., M. Juhas, A. Sjolander, and C. Eintrei. 2007. The effect of propofol on actin, ERK-1/2 and GABAA receptor content in neurones. Acta Anaesthesiologica Scandinavica 51(9): 1184–1189. doi: 10.1111/j.1399-6576.2007.01388.x.CrossRefPubMedGoogle Scholar
  26. Pearn, M.L., Y. Hu, I.R. Niesman, et al. 2012. Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology 116(2): 352–361. doi: 10.1097/ALN.0b013e318242a48c.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Popic, J., V. Pesic, D. Milanovic, et al. 2012. Propofol-induced changes in neurotrophic signaling in the developing nervous system in vivo. PLoS One 7(4): e34396. doi: 10.1371/journal.pone.0034396.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Reddy, S.V. 2012. Effect of general anesthetics on the developing brain. Journal of Anaesthesiology, Clinical Pharmacology 28(1): 6–10. doi: 10.4103/0970-9185.92426.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Samson, A.L., and R.L. Medcalf. 2006. Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 50(5): 673–678. doi: 10.1016/j.neuron.2006.04.013.CrossRefPubMedGoogle Scholar
  30. Shin, C.Y., J.W. Choi, J.R. Ryu, et al. 2001. Immunostimulation of rat primary astrocytes decreases intracellular ATP level. Brain Research 902(2): 198–204.CrossRefPubMedGoogle Scholar
  31. Tateishi, N., T. Shimoda, J. Manako, S. Katsumata, R. Shinagawa, and H. Ohno. 2006. Relevance of astrocytic activation to reductions of astrocytic GABAA receptors. Brain Research 1089(1): 79–91. doi: 10.1016/j.brainres.2006.02.139.CrossRefPubMedGoogle Scholar
  32. Turina, D., V.M. Loitto, K. Bjornstrom, T. Sundqvist, and C. Eintrei. 2008. Propofol causes neurite retraction in neurones. British Journal of Anaesthesia 101(3): 374–379. doi: 10.1093/bja/aen185.CrossRefPubMedGoogle Scholar
  33. Wang, D.S., A.A. Zurek, I. Lecker, et al. 2012. Memory deficits induced by inflammation are regulated by alpha5-subunit-containing GABAA receptors. Cell Reports 2(3): 488–496. doi: 10.1016/j.celrep.2012.08.022.CrossRefPubMedGoogle Scholar
  34. Wei, L., H. Matsumoto, and H. Yamaguchi. 2012. Propofol attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production through p38 MAPK and SAPK/JNK in alveolar epithelial cells. Journal of Anesthesia 27(3): 366–373. doi: 10.1007/s00540-012-1539-7.CrossRefPubMedGoogle Scholar
  35. Yu, D., Y. Jiang, J. Gao, B. Liu, and P. Chen. 2013. Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats. Neuroscience Letters 534: 41–46. doi: 10.1016/j.neulet.2012.12.033.CrossRefPubMedGoogle Scholar
  36. Yu, G., M. Dymond, L. Yuan, et al. 2011. Propofol’s effects on phagocytosis, proliferation, nitrate production, and cytokine secretion in pressure-stimulated microglial cells. Surgery 150(5): 887–896.CrossRefPubMedGoogle Scholar
  37. Zhang, Y., Y. Zhen, Y. Dong, et al. 2011. Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Abeta oligomerization. PLoS One 6(11): e27019. doi: 10.1371/journal.pone.0027019.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2014

Authors and Affiliations

  • Hyun Myung Ko
    • 1
  • So Hyun Joo
    • 1
  • Sung Hoon Lee
    • 1
  • Hee Jin Kim
    • 3
  • Seung-Hyun Lee
    • 2
  • Jae Hoon Cheong
    • 3
  • Jong Hoon Ryu
    • 4
  • Jeong Min Kim
    • 5
  • Bon-Nyeo Koo
    • 5
    Email author
  • Chan Young Shin
    • 1
    Email author
  1. 1.Department of Neuroscience, School of Medicine and Neuroscience Research Center, Institute SMART-IABSKonkuk UniversitySeoulKorea
  2. 2.Department of Immunology, School of MedicineKonkuk UniversitySeoulKorea
  3. 3.Department of PharmacySahmyook UniversitySeoulKorea
  4. 4.Department of Oriental Pharmaceutical ScienceKyung Hee UniversitySeoulKorea
  5. 5.Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research InstituteYonsei University College of MedicineSeoulKoera

Personalised recommendations