Skip to main content
Log in

Hypo-pigmenting effect of sesquiterpenes from Inula britannica in B16 melanoma cells

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

An Erratum to this article was published on 25 March 2014

Abstract

During the course of screens to identify anti-melanogenic agents from natural resources, we found that the methanol extract of the dried flower of Inula britannica L. inhibited melanin synthesis in cultured melanoma cells stimulated with 3-isobutyl-1-methylxanthine (IBMX). A bioassay-guided isolation of the chloroform fraction of the I. britannica using an in vitro melanogenesis inhibition assay led to the isolation of sesquiterpenes, 1-O-acetylbritannilactone (1), britannilactone (2) and neobritannilactone B (3). Compounds 1 and 2 significantly reduced melanin production in a dose-dependent manner with IC50 values of 13.3 and 15.5 μM, respectively, whereas compound 3 was found to be cytotoxic. Compound 1 also inhibited the tyrosinase activity only in cell based-systems. Western blot analysis indicated that compound 1 inhibited melanogenesis by activating extracellular signal-regulated kinase (ERK) and Akt signaling and also inhibiting cAMP related binding protein, which regulates its downstream pathway, including tyrosinase, tyrosinase related protein-1 and TRP-2. These results demonstrated that compound 1, a major sesquiterpene from the flowers of I. britannica, exhibited anti-melanogenic activity by suppression of tyrosinase expression via ERK and Akt signaling. Taken together, our results suggest that these compounds may act as potent natural skin-lightening agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amer, M., and M. Metwalli. 2000. Topical liquiritin improves melasma. International Journal of Dermatology 39: 299–301.

    Article  CAS  PubMed  Google Scholar 

  • Badreshia-Bansal, S., and Z.D. Draelos. 2007. Insight into skin lightening cosmeceuticals for women of color. Journal of Drugs in Dermatology 6: 32–39.

    PubMed  Google Scholar 

  • Bai, N., Z. Zhou, N. Zhu, L. Zhang, Z. Quan, K. He, Q.Y. Zheng, and C.T. Ho. 2005. Antioxidative flavonoids from the flower of Inula britannica. Journal of Food Lipids 12: 141–149.

    Article  CAS  Google Scholar 

  • Chang, T.S. 2009. An updated review of tyrosinase inhibitor. International Journal of Molecular Sciences 10: 2440–2475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choo, S.J., I.J. Ryoo, Y.H. Kim, G.H. Xu, W.G. Kim, K.H. Kim, S.J. Moon, E.D. Son, K. Bae, and I.D. Yoo. 2009a. Silymarin inhibits melanin synthesis in melanocyte cells. Journal of Pharmacy and Pharmacology 61: 663–667.

    Article  CAS  PubMed  Google Scholar 

  • Choo, S.J., B.S. Yun, I.J. Ryoo, Y.H. Kim, K. Bae, and I.D. Yoo. 2009b. Aspochalasin I, a melanogenesis inhibitor from Aspergillus sp. Journal of Microbiology and Biotechnology 19: 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Curto, E.V., C. Kwong, H. Hermersdorfer, H. Glatt, C. Santis, V. Virador, V.J. Hearing, and T.P. Dooley. 1999. Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochemical Pharmacology 57: 663–672.

    Article  CAS  PubMed  Google Scholar 

  • Davis, E.C., and V.D. Callender. 2010. Postinflammatory hyperpigmentation: a review of the epidemiology, clinical features, and treatment options in skin of color. The Journal of Clinical and Aesthetic Dermatology 3: 20–31.

    PubMed Central  PubMed  Google Scholar 

  • Denizot, F., and R. Lang. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods 89: 271–277.

    Article  CAS  PubMed  Google Scholar 

  • Han, M., J. Wen, B. Zheng, and D.Q. Zhang. 2004. Acetylbritannilactone suppresses NO and PGE2 synthesis in Raw 264.7 macrophage through the inhibition of iNOS and COX-2 gene expression. Life Sciences 75: 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Iijima, K., H. Kiyohara, M. Tanaka, T. Matsumoto, J.C. Cyong, and H. Yamada. 1995. Preventive effect of taraxasteryl acetate from Inula britannica subsp. Japonica on experimental hepatitis in vivo. Planta Medica 61: 50–53.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z., J. Xu, M. Long, Z. Tu, G. Yang, and G. He. 2009. 2,3,5,4’-Tetrahycrostilbene-2-O-beta-d-glucoside (THSG) induces melanogenesis in B16 cells by MAP kinase activation and tyrosinase upregulation. Life Sciences 85: 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Jin, H.Z., D. Lee, J.H. Lee, K. Lee, Y.S. Hong, D.H. Choung, Y.H. Kim, and J.J. Lee. 2006. New sesquiterpene dimmers from Inula britannica inhibits NF-kappaB activation and NO and TNF-alpha production in LPS-stimulated RAW264.7 cells. Planta Medica 72: 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Jin, M.L., S.T. Park, Y.H. Kim, G. Park, H.J. Son, and S.J. Lee. 2012. Suppression of α-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. International Journal of Molecular Medicine 29: 119–124.

    CAS  PubMed  Google Scholar 

  • Khan, A.L., J. Hussain, M. Hamayun, S.A. Gilani, S. Ahmad, G. Rehman, Y.H. Kim, S.M. Kang, and I.J. Lee. 2010. Secondary metabolites from Inula britannica L. and their biological activities. Molecules 15: 1562–1577.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.S., Y.M. Jeong, I.K. Park, H.G. Hahn, H.K. Lee, S.B. Kwon, J.H. Jeong, S.J. Yang, U.D. Sohn, and K.C. Park. 2007. A new 2-imino-1,3-thiazoline derivative, KHG22394, inhibits melanin synthesis in mouse B16 melanoma cells. Biological and Pharmaceutical Bulletin 30: 180–183.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.J., H.R. Choi, D.S. Kim, and K.C. Park. 2012a. Topical hypo-pigmenting agents for pigmentary disorders and their mechanisms of action. Annals of Dermatology 24: 1–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, S.R., M.J. Park, M.K. Lee, S.H. Sung, E.J. Park, J. Kim, S.Y. Kim, T.H. Oh, G.J. Markelonis, and Y.C. Kim. 2002. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radical Biology and Medicine 32: 596–604.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.Y., J.Y. Shin, M.R. Kim, S.K. Hann, and S.H. Oh. 2012b. siRNA-mediated knock-down of COX-2 in melanocytes suppresses melanogenesis. Experimental Dermatology 21: 420–425.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.D., and J.D. Choi. 1999. The effects if Areca catechu L extract on anti-inflammation and anti-melanogenesis. International Journal of Cosmetic Science 21: 275–284.

    Article  CAS  PubMed  Google Scholar 

  • Lin, J.Y., and D.E. Fisher. 2007. Melanocyte biology and skin pigmentation. Nature 445: 843–850.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B.L., M. Han, and J.K. Wen. 2008. Acetylbritannilactone inhibits neointimal hyperplasia after balloon injury of rat artery by suppressing nuclear factor-κB activation. The Journal of Pharmacology and Experimental Therapeutics 324: 292–298.

    Article  CAS  PubMed  Google Scholar 

  • Pan, M.H., Y. Chiou, A.C. Cheng, N. Bai, C.Y. Lo, D. Tan, and C.T. Ho. 2007. Involvement of MAPK, Bcl-2 family, cytochrome-c, and caspases in induction of apoptosis by 1,6-O, O-diacetylbritannilactone in human leukemia cells. Molecular Nutrition and Food Research 51: 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Park, E.J., and J. Kim. 1998. Cytotoxic sesquiterpene lactones from Inula britannica. Planta Medica 64: 752–754.

    Article  CAS  PubMed  Google Scholar 

  • Park, E.J., Y. Kim, and J. Kim. 2000. Acylated flavonol glycosides from the flower of Inula britannica. Journal of Natural Products 63: 34–36.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.H., D.S. Kim, W.G. Kim, I.J. Ryoo, D.H. Lee, C.H. Huh, S.W. Youn, I.D. Yoo, and K.C. Park. 2004. Terrein: a new melanogenesis inhibitor and its mechanism. Cellular and Molecular Life Sciences 61: 2878–2885.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.H., D.S. Kim, H.K. Lee, S.B. Kwon, S. Lee, I.J. Ryoo, W.G. Kim, I.D. Yoo, and K.C. Park. 2009. Long-term suppression of tyrosinase by terrein via tyrosinase degradation and its decreased expression. Experimental Dermatology 18: 562–566.

    Article  CAS  PubMed  Google Scholar 

  • Rafi, M., N. Bai, C.T. Ho, R.T. Rosen, E. White, D. Perez, and R.S. Dipaola. 2005. A sesquiterpenelactone from Inula britannica induces anti-tumor effects dependent on Bcl-2 phosphorylation. Anticancer Research 25: 313–318.

    CAS  PubMed  Google Scholar 

  • Sato, K., H. Takahashi, R. Iraha, and M. Toriyama. 2008. Down-regulation of tyrosinase expression by acetylsalicylic acid in murine B16 melanoma. Biological and Pharmaceutical Bulletin 31: 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Shao, Y., N. Bai, and B. Zhou. 1996. Kaurane glycosides from Inula britannica. Phytochemistry 42: 783–786.

    Article  CAS  Google Scholar 

  • Shen, T., S.I. Heo, and M.H. Wang. 2012. Involvement of the p38 MAPK and ERK signaling pathway in the anti-melanogenic effect of methyl 3,5-dicaffeoyl quinate in B16F10 mouse melanoma cells. Chemico-Biological Interactions 199: 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Solano, F., S. Briganti, M. Picardo, and G. Ghanem. 2006. Hypo-pigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Research 19: 550–571.

    Article  CAS  PubMed  Google Scholar 

  • Tatsuno, T., M. Jinno, Y. Arima, T. Kawabata, T. Hasegawa, N. Yahagi, F. Takano, and T. Ohta. 2012. Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biological and Pharmaceutical Bulletin 35: 909–916.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, Y., and V.J. Hearing. 2009. Physiological factors that regulate skin pigmentation. BioFactors 35: 193–199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye, Y., J.H. Chu, H. Wang, H. Xu, G.X. Chou, A.K. Leung, W.F. Fong, and Z.L. Yu. 2010. Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells. Journal of Ethnopharmacology 132: 533–535.

    Article  PubMed  Google Scholar 

  • Yokota, T., H. Nishio, Y. Kubota, and M. Mizoquchi. 1998. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Research 11: 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y.M., M.L. Zhang, Q.W. Shi, and H. Kiyota. 2006. Chemical constituents of plants from the genus Inula. Chemistry and Biodiversity 3: 371–384.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, B., N. Bai, L.Z. Lin, and G.A. Cordell. 1993. Sesquiterpene lactones from Inula britannica. Phytochemistry 34: 249–252.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the INNOPOLIS Foundation of Korea grant funded by the Ministry of Science, ICT & Future Planning and Global R & D Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick-Dong Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choo, SJ., Ryoo, IJ., Kim, K.C. et al. Hypo-pigmenting effect of sesquiterpenes from Inula britannica in B16 melanoma cells. Arch. Pharm. Res. 37, 567–574 (2014). https://doi.org/10.1007/s12272-013-0302-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0302-4

Keywords

Navigation