Skip to main content
Log in

Establishment and characterization of human engineered cells stably expressing large extracellular matrix proteins

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Commercially available extracellular matrix (ECM) hydrogel-coated culture plates have been used to study the relationship between the ECM microenvironment and stem cell behavior. However, it is unclear whether ECM-coated dishes mimic the natural ECM microenvironment because the architecture of the ECM is constructed of randomly distributed fibers. The purpose of this study was the production and confirmation of human engineered cell lines stably expressing large ECM proteins such as collagen I/II and fibronectin. First, large (over 10 kb) ECM vectors encoding human collagen I/II and fibronectin were constructed and the circular vectors were linearized. Second, the linear ECM vectors were introduced into immortalized human embryonic kidney cells using various transfection methods. The polyethylenimine and liposome methods showed higher efficiencies than electroporation for transfection of these large vectors. Third, human ECM engineered cells were established by stable integration of the vector into the genomic DNA and resulted in stable overexpression of mRNA and proteins. In summary, human engineered cell lines stably expressing large ECM proteins such as human collagen I/II and fibronectin were successfully prepared, and secretion of the ECM components into the surrounding environment was confirmed by immunocytochemistry. Thus, human ECM engineered cells naturally secreting ECM components could be valuable for studying the relationship between the native ECM microenvironment and stem cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, J.C., and F.M. Watt. 1993. Regulation of development and differentiation by the extracellular matrix. Development 117: 1183–1198.

    CAS  PubMed  Google Scholar 

  • Bloquel, C., E. Fabre, M.F. Bureau, and D. Scherman. 2004. Plasmid DNA electrotransfer for intracellular and secreted proteins expression: New methodological developments and applications. The Journal of Gene Medicine 6(Suppl 1): S11–S23.

    Article  CAS  PubMed  Google Scholar 

  • Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. 2006. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnology and Bioengineering 93: 1152–1163.

    Article  CAS  PubMed  Google Scholar 

  • Campeau, P., P. Chapdelaine, S. Seigneurin-Venin, B. Massie, and J.P. Tremblay. 2001. Transfection of large plasmids in primary human myoblasts. Gene Therapy 8: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  • Cha, M.H., S.H. Do, G.R. Park, P. Du, K.C. Han, D.K. Han, and K. Park. 2013. Induction of re-differentiation of passaged rat chondrocytes using a naturally obtained extracellular matrix microenvironment. Tissue Engineering Part A 19: 978–988.

    Article  CAS  PubMed  Google Scholar 

  • Chancham, P., and J.A. Hughes. 2001. Relationship between plasmid DNA topological forms and in vitro transfection. Journal of Liposome Research 11: 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z.Y., S.R. Yant, C.Y. He, L. Meuse, S. Shen, and M.A. Kay. 2001. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Molecular Therapy 3: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Cherng, J.Y., N.M. Schuurmans-Nieuwenbroek, W. Jiskoot, H. Talsma, N.J. Zuidam, W.E. Hennink, and D.J. Crommelin. 1999. Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. Journal of Controlled Release 60: 343–353.

    Article  CAS  PubMed  Google Scholar 

  • Dequach, J.A., V. Mezzano, A. Miglani, S. Lange, G.M. Keller, F. Sheikh, and K.L. Christman. 2010. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS ONE 5: e13039.

    Article  PubMed Central  PubMed  Google Scholar 

  • Everitt, E.A., A.B. Malik, and B. Hendey. 1996. Fibronectin enhances the migration rate of human neutrophils in vitro. Journal of Leukocyte Biology 60: 199–206.

    CAS  PubMed  Google Scholar 

  • Hakala, H., K. Rajala, M. Ojala, S. Panula, S. Areva, M. Kellomaki, R. Suuronen, and H. Skottman. 2009. Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines. Tissue Engineering Part A 15: 1775–1785.

    Article  CAS  PubMed  Google Scholar 

  • Hesse, E., T.E. Hefferan, J.E. Tarara, C. Haasper, R. Meller, C. Krettek, L. Lu, and M.J. Yaszemski. 2010. Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. Journal of Biomedical Materials Research, Part A 94: 442–449.

    Google Scholar 

  • Kern, B., J. Shen, M. Starbuck, and G. Karsenty. 2001. Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. Journal of Biological Chemistry 276: 7101–7107.

    Article  CAS  PubMed  Google Scholar 

  • Koochekpour, S., A. Merzak, and G.J. Pilkington. 1995. Extracellular matrix proteins inhibit proliferation, upregulate migration and induce morphological changes in human glioma cell lines. European Journal of Cancer 31A: 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Krassowska, W., and P.D. Filev. 2007. Modeling electroporation in a single cell. Biophysical Journal 92: 404–417.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pankov, R., and K.M. Yamada. 2002. Fibronectin at a glance. Journal of Cell Science 115: 3861–3863.

    Article  CAS  PubMed  Google Scholar 

  • Prowse, A.B., F. Chong, P.P. Gray, and T.P. Munro. 2011. Stem cell integrins: Implications for ex vivo culture and cellular therapies. Stem Cell Research 6: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P., and J.E. Schwarzbauer. 2012. Fibronectin and stem cell differentiation - lessons from chondrogenesis. Journal of Cell Science 125: 3703–3712.

    Article  CAS  PubMed  Google Scholar 

  • Soteriou, D., B. Iskender, A. Byron, J.D. Humphries, S. Borg-Bartolo, M.C. Haddock, M.A. Baxter, D. Knight, M.J. Humphries, and S.J. Kimber. 2013. Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. Journal of Biological Chemistry 288: 18716–18731.

    Article  CAS  PubMed  Google Scholar 

  • Stuchbury, G., and G. Munch. 2010. Optimizing the generation of stable neuronal cell lines via pre-transfection restriction enzyme digestion of plasmid DNA. Cytotechnology 62: 189–194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tros De Ilarduya, C., Y. Sun, and N. Duzgunes. 2010. Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences 40: 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Uygun, B.E., A. Soto-Gutierrez, H. Yagi, M.L. Izamis, M.A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M.L. Yarmush, and K. Uygun. 2010. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine 16: 814–820.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xi, J., Y. Wang, P. Zhang, L. He, X. Nan, W. Yue, and X. Pei. 2010. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells. PLoS ONE 5: e14457.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu, C., M.S. Inokuma, J. Denham, K. Golds, P. Kundu, J.D. Gold, and M.K. Carpenter. 2001. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology 19: 971–974.

    Article  CAS  PubMed  Google Scholar 

  • Zou, C., B.K. Chou, S.N. Dowey, K. Tsang, X. Huang, C.F. Liu, C. Smith, J. Yen, P. Mali, Y.A. Zhang, L. Cheng, and Z. Ye. 2012. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines. Stem Cells and Development 21: 2298–2311.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Korea Institute of Science and Technology institutional program (No. 2E24190-13-022), the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A9B4028569) and a grant of Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2012R1A6A3A01039460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Hong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, D., Kang, GS., Han, D.K. et al. Establishment and characterization of human engineered cells stably expressing large extracellular matrix proteins. Arch. Pharm. Res. 37, 149–156 (2014). https://doi.org/10.1007/s12272-013-0294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0294-0

Keywords

Navigation