Skip to main content
Log in

Nonviral delivery for reprogramming to pluripotency and differentiation

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Nonviral delivery is a promising strategy for cellular reprogramming to produce desired cell types from undifferentiated stem cells or terminally differentiated somatic cells. Nonviral delivery of genes (DNA, RNA), proteins, or peptides has the potential to reprogram somatic cells to pluripotent stem cells or other lineage cells, and to promote the differentiation of stem cells to specific lineages. Various delivery carriers (cationic polymers, lipids, scaffolds, transposons, cell-penetrating peptides), cargos (episomal plasmids, minicircle DNA, small interfering RNAs, microRNAs, proteins, peptides), and method (electroporation) have been reported. In this article, we review recent advances in nonviral delivery approaches for reprogramming cells to pluripotency or lineage specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adler, A.F., C.L. Grigsby, K. Kulangara, H. Wang, R. Yasuda, and K.W. Leong. 2012. Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Molecular Therapy Nucleic Acids 1: e32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Akinc, A., A. Zumbuehl, M. Goldberg, E.S. Leshchiner, V. Busini, N. Hossain, S.A. Bacallado, D.N. Nguyen, J. Fuller, R. Alvarez, A. Borodovsky, T. Borland, R. Constien, A. De Fougerolles, J.R. Dorkin, K. Narayanannair Jayaprakash, M. Jayaraman, M. John, V. Koteliansky, M. Manoharan, L. Nechev, J. Qin, T. Racie, D. Raitcheva, K.G. Rajeev, D.W. Sah, J. Soutschek, I. Toudjarska, H.P. Vornlocher, T.S. Zimmermann, R. Langer, and D.G. Anderson. 2008. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology 26: 561–569.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen, M.O., J.V. Nygaard, J.S. Burns, M.K. Raarup, J.R. Nyengaard, C. Bunger, F. Besenbacher, K.A. Howard, M. Kassem, and J. Kjems. 2010. siRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells. Molecular Therapy 18: 2018–2027.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D.G., A. Akinc, N. Hossain, and R. Langer. 2005. Structure/property studies of polymeric gene delivery using a library of poly(β-amino esters). Molecular Therapy 11: 426–434.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D.G., D.M. Lynn, and R. Langer. 2003. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angewandte Chemie 42: 3153–3158.

    CAS  PubMed  Google Scholar 

  • Anderson, D.G., W. Peng, A. Akinc, N. Hossain, A. Kohn, R. Padera, R. Langer, and J.A. Sawicki. 2004. A polymer library approach to suicide gene therapy for cancer. Proceedings of the National Academy of Sciences of the United States of America 101: 16028–16033.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bian, L., D.Y. Zhai, E. Tous, R. Rai, R.L. Mauck, and J.A. Burdick. 2011. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32: 6425–6434.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai, P., Z. Xue, W. Qi, and H. Wang. 2013. Adsorbed BMP-2 in polyelectrolyte multilayer films for enhanced early osteogenic differentiation of mesenchymal stem cells. Colloids and Surfaces A 434: 110–117.

    Article  CAS  Google Scholar 

  • Cao, X., W. Deng, R. Qu, Q. Yu, J. Li, Y. Yang, Y. Cao, X. Gao, X. Xu, and J. Yu. 2013. Non-viral co-delivery of the four yamanaka factors for generation of human induced pluripotent stem cells via calcium phosphate nanocomposite particles. Advanced Functional Materials. doi:10.1002/adfm.201203646.

    Google Scholar 

  • Chen, C.Z., L. Li, H.F. Lodish, and D.P. Bartel. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., H. Chen, P. Li, H. Diao, S. Zhu, L. Dong, R. Wang, T. Guo, J. Zhao, and J. Zhang. 2011. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32: 4793–4805.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S.W., F. Yang, S.M. Son, H.J. Park, J.J. Green, S. Bogatyrev, Y. Mei, S. Park, R. Langer, and D.G. Anderson. 2012. Therapeutic angiogenesis using genetically engineered human endothelial cells. Journal of Controlled Release 160: 515–524.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, S.M., H. Liu, P. Chaudhari, Y. Kim, L. Cheng, J. Feng, S. Sharkis, Z. Ye, and Y.Y. Jang. 2011. Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood 118: 1801–1805.

    Article  CAS  PubMed  Google Scholar 

  • Chou, B.K., P. Mali, X. Huang, Z. Ye, S.N. Dowey, L.M. Resar, C. Zou, Y.A. Zhang, J. Tong, and L. Cheng. 2011. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research 21: 518–529.

    Article  CAS  PubMed  Google Scholar 

  • Curtin, C.M., G.M. Cunniffe, F.G. Lyons, K. Bessho, G.R. Dickson, G.P. Duffy, and F.J. O’brien. 2012. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Advanced Materials 24: 749–754.

    Article  CAS  PubMed  Google Scholar 

  • Dowey, S.N., X. Huang, B.K. Chou, Z. Ye, and L. Cheng. 2012. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nature Protocols 7: 2013–2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eltoukhy, A.A., D.J. Siegwart, C.A. Alabi, J.S. Rajan, R. Langer, and D.G. Anderson. 2012. Effect of molecular weight of amine end-modified poly(β-amino ester)s on gene delivery efficiency and toxicity. Biomaterials 33: 3594–3603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng, R., S.C. Desbordes, H. Xie, E.S. Tillo, F. Pixley, E.R. Stanley, and T. Graf. 2008. Pu.1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proceedings of the National Academy of Sciences of the United States of America 105: 6057–6062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fierro, F.A., S. Kalomoiris, C.S. Sondergaard, and J.A. Nolta. 2011. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 29: 1727–1737.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez, F., M. Barragan Monasterio, G. Tiscornia, N. Montserrat Pulido, R. Vassena, L. Batlle Morera, I. Rodriguez Piza, and J.C. Izpisua Belmonte. 2009. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America 106: 8918–8922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez, F., S. Boue, and J.C. Izpisua Belmonte. 2011. Methods for making induced pluripotent stem cells: Reprogramming a La Carte. Nature Reviews Genetics 12: 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Green, J.J., R. Langer, and D.G. Anderson. 2008. A combinatorial polymer library approach yields insight into nonviral gene delivery. Accounts of Chemical Research 41: 749–759.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green, J.J., J. Shi, E. Chiu, E.S. Leshchiner, R. Langer, and D.G. Anderson. 2006. Biodegradable polymeric vectors for gene delivery to human endothelial cells. Bioconjugate Chemistry 17: 1162–1169.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., and L. Huang. 2012. Recent advances in nonviral vectors for gene delivery. Accounts of Chemical Research 45: 971–979.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He, C.X., N. Li, Y.L. Hu, X.M. Zhu, H.J. Li, M. Han, P.H. Miao, Z.J. Hu, G. Wang, W.Q. Liang, Y. Tabata, and J.Q. Gao. 2011. Effective gene delivery to mesenchymal stem cells based on the reverse transfection and three-dimensional cell culture system. Pharmaceutical Research 28: 1577–1590.

    Article  CAS  PubMed  Google Scholar 

  • Ieda, M., J.D. Fu, P. Delgado-Olguin, V. Vedantham, Y. Hayashi, B.G. Bruneau, and D. Srivastava. 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375–386.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jayawardena, T.M., B. Egemnazarov, E.A. Finch, L. Zhang, J.A. Payne, K. Pandya, Z. Zhang, P. Rosenberg, M. Mirotsou, and V.J. Dzau. 2012. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research 110: 1465–1473.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeon, S.Y., J.S. Park, H.N. Yang, D.G. Woo, and K.H. Park. 2012. Co-delivery of SOX9 genes and anti-Cbfa-1 siRNA coated onto PLGA nanoparticles for chondrogenesis of human MSCs. Biomaterials 33: 4413–4423.

    Article  CAS  PubMed  Google Scholar 

  • Jia, F., K.D. Wilson, N. Sun, D.M. Gupta, M. Huang, Z. Li, N.J. Panetta, Z.Y. Chen, R.C. Robbins, M.A. Kay, M.T. Longaker, and J.C. Wu. 2010. A nonviral minicircle vector for deriving human iPS cells. Nature Methods 7: 197–199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaji, K., K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, and K. Woltjen. 2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458: 771–775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamat, C.D., R.B. Shmueli, N. Connis, C.M. Rudin, J.J. Green, and C.L. Hann. 2013. Poly (β-amino ester) nanoparticle delivery of TP53 has activity against small cell lung cancer in vitro and in vivo. Molecular Cancer Therapeutics 12: 405–415.

    Article  CAS  PubMed  Google Scholar 

  • Karow, M., C.L. Chavez, A.P. Farruggio, J.M. Geisinger, A. Keravala, W.E. Jung, F. Lan, J.C. Wu, Y. Chen-Tsai, and M.P. Calos. 2011. Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA. Stem Cells 29: 1696–1704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan, M., K. Narayanan, H. Lu, Y. Choo, C. Du, N. Wiradharma, Y.Y. Yang, and A.C. Wan. 2013. Delivery of reprogramming factors into fibroblasts for generation of non-genetic induced pluripotent stem cells using a cationic bolaamphiphile as a non-viral vector. Biomaterials 34: 5336–5343.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., C.H. Kim, J.I. Moon, Y.G. Chung, M.Y. Chang, B.S. Han, S. Ko, E. Yang, K.Y. Cha, R. Lanza, and K.S. Kim. 2009. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4: 472–476.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, M.J., B. Lee, K. Yang, J. Park, S. Jeon, S.H. Um, D.I. Kim, S.G. Im, and S.W. Cho. 2013. BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials 34: 7236–7246.

    Article  CAS  PubMed  Google Scholar 

  • Kleemann, E., M. Neu, N. Jekel, L. Fink, T. Schmehl, T. Gessler, W. Seeger, and T. Kissel. 2005. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG–PEI. Journal of Controlled Release 109: 299–316.

    Article  CAS  PubMed  Google Scholar 

  • Ko, E., K. Yang, J. Shin, and S.W. Cho. 2013. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules 14: 3202–3213.

    Article  CAS  PubMed  Google Scholar 

  • Kues, W.A., D. Herrmann, B. Barg-Kues, S. Haridoss, M. Nowak-Imialek, T. Buchholz, M. Streeck, A. Grebe, I. Grabundzija, S. Merkert, U. Martin, V.J. Hall, M.A. Rasmussen, Z. Ivics, P. Hyttel, and H. Niemann. 2013. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells and Development 22: 124–135.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C.H., J.H. Kim, H.J. Lee, K. Jeon, H. Lim, H. Choi, E.R. Lee, S.H. Park, J.Y. Park, S. Hong, S. Kim, and S.G. Cho. 2011. The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials 32: 6683–6691.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., S.M. Dellatore, W.M. Miller, and P.B. Messersmith. 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science 318: 426–430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, H., J. Rho, and P.B. Messersmith. 2009. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials 21: 431–434.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, D., X. He, K. Wang, C. He, H. Shi, and L. Jian. 2010. Biocompatible silica nanoparticles-insulin conjugates for mesenchymal stem cell adipogenic differentiation. Bioconjugate Chemistry 21: 1673–1684.

    Article  CAS  PubMed  Google Scholar 

  • Lock, J., and H. Liu. 2011. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. International Journal of Nanomedicine 6: 2769–2777.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Low, W.C., P.-O. Rujitanaroj, F. Wang, J. Wang, and S.Y. Chew. 2013a. Nanofiber-mediated release of retinoic acid and brain-derived neurotrophic factor for enhanced neuronal differentiation of neural progenitor cells. Drug Delivery and Translational Research. doi:0.1007/s13346-013-0131-5.

    Google Scholar 

  • Low, W.C., P.O. Rujitanaroj, D.K. Lee, P.B. Messersmith, L.W. Stanton, E. Goh, and S.Y. Chew. 2013b. Nanofibrous scaffold-mediated REST knockdown to enhance neuronal differentiation of stem cells. Biomaterials 34: 3581–3590.

    Article  CAS  PubMed  Google Scholar 

  • Merling, R.K., C.L. Sweeney, U. Choi, S.S. De Ravin, T.G. Myers, F. Otaizo-Carrasquero, J. Pan, G. Linton, L. Chen, S. Koontz, N.L. Theobald, and H.L. Malech. 2013. Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+cells. Blood 121: e98–e107.

    Article  CAS  PubMed  Google Scholar 

  • Narsinh, K.H., F. Jia, R.C. Robbins, M.A. Kay, M.T. Longaker, and J.C. Wu. 2011. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nature Protocols 6: 78–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okita, K., M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka. 2008. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: 949–953.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.J., J. Lee, M.J. Kim, T.J. Kang, Y. Jeong, S.H. Um, and S.W. Cho. 2012a. Sonic hedgehog intradermal gene therapy using a biodegradable poly(β-amino esters) nanoparticle to enhance wound healing. Biomaterials 33: 9148–9156.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.J., F. Yang, and S.W. Cho. 2012b. Nonviral delivery of genetic medicine for therapeutic angiogenesis. Advanced Drug Delivery Reviews 64: 40–52.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.S., H.N. Yang, S.Y. Jeon, D.G. Woo, K. Na, and K.-H. Park. 2010. Osteogenic differentiation of human mesenchymal stem cells using RGD-modified BMP-2 coated microspheres. Biomaterials 31: 6239–6248.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.S., H.N. Yang, D.G. Woo, S.Y. Jeon, H.J. Do, H.Y. Lim, J.H. Kim, and K.H. Park. 2011. Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX Trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials 32: 3679–3688.

    Article  CAS  PubMed  Google Scholar 

  • Qutachi, O., K.M. Shakesheff, and L.D.K. Buttery. 2013. Delivery of definable number of drug or growth factor loaded poly (dl-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates. Journal of Controlled Release 168: 18–27.

    Article  CAS  PubMed  Google Scholar 

  • Ramasubramanian, A., S. Shiigi, G.K. Lee, and F. Yang. 2011. Non-viral delivery of inductive and suppressive genes to adipose-derived stem cells for osteogenic differentiation. Pharmaceutical Research 28: 1328–1337.

    Article  CAS  PubMed  Google Scholar 

  • Robinton, D.A., and G.Q. Daley. 2012. The promise of induced pluripotent stem cells in research and therapy. Nature 481: 295–305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shah, B., P.T. Yin, S. Ghoshal, and K.B. Lee. 2013. Multimodal magnetic core-shell nanoparticles for effective stem-cell differentiation and imaging. Angewandte Chemie 52: 6190–6195.

    CAS  PubMed  Google Scholar 

  • Sohn, Y.D., I. Somasuntharam, P.L. Che, R. Jayswal, N. Murthy, M.E. Davis, and Y.S. Yoon. 2013. Induction of pluripotency in bone marrow mononuclear cells via polyketal nanoparticle-mediated delivery of mature microRNAs. Biomaterials 34: 4235–4241.

    Article  CAS  PubMed  Google Scholar 

  • Solanki, A., S. Shah, P.T. Yin, and K.-B. Lee. 2013. Nanotopography-mediated reverse uptake for siRNA delivery into neural stem cells to enhance neuronal differentiation. Scientific Reports 3: 1553.

    PubMed Central  PubMed  Google Scholar 

  • Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C.E., A. Ehrhardt, and M.A. Kay. 2003. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics 4: 346–358.

    Article  CAS  PubMed  Google Scholar 

  • Tsukiyama, T., R. Asano, T. Kawaguchi, N. Kim, M. Yamada, N. Minami, Y. Ohinata, and H. Imai. 2011. Simple and efficient method for generation of induced pluripotent stem cells using piggybac transposition of doxycycline-inducible factors and an EOS reporter system. Genes to Cells 16: 815–825.

    Article  CAS  PubMed  Google Scholar 

  • Tzeng, S.Y., B.P. Hung, W.L. Grayson, and J.J. Green. 2012. Cystamine-terminated poly(Beta-amino ester)a for siRNA delivery to human mesenchymal stem cells and enhancement of osteogenic differentiation. Biomaterials 33: 8142–8151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tzeng, S.Y., and E.B. Lavik. 2010. Photopolymerizable nanoarray hydrogels deliver CNTF and promote differentiation of neural stem cells. Soft Matter 6: 2208–2215.

    Article  CAS  Google Scholar 

  • Vierbuchen, T., A. Ostermeier, Z.P. Pang, Y. Kokubu, T.C. Sudhof, and M. Wernig. 2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463: 1035–1041.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., J. Chen, J.L. Hu, X.X. Wei, D. Qin, J. Gao, L. Zhang, J. Jiang, J.S. Li, J. Liu, K.Y. Lai, X. Kuang, J. Zhang, D. Pei, and G.L. Xu. 2011. Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Reports 12: 373–378.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warren, L., P.D. Manos, T. Ahfeldt, Y.H. Loh, H. Li, F. Lau, W. Ebina, P.K. Mandal, Z.D. Smith, A. Meissner, G.Q. Daley, A.S. Brack, J.J. Collins, C. Cowan, T.M. Schlaeger, and D.J. Rossi. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7: 618–630.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woltjen, K., I.P. Michael, P. Mohseni, R. Desai, M. Mileikovsky, R. Hamalainen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H.K. Sung, and A. Nagy. 2009. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: 766–770.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, F., S.W. Cho, S.M. Son, S.R. Bogatyrev, D. Singh, J.J. Green, Y. Mei, S. Park, S.H. Bhang, B.S. Kim, R. Langer, and D.G. Anderson. 2010. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 107: 3317–3322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, F., J.J. Green, T. Dinio, L. Keung, S.W. Cho, H. Park, R. Langer, and D.G. Anderson. 2009. Gene delivery to human adult and embryonic cell-derived stem cells using biodegradable nanoparticulate polymeric vectors. Gene Therapy 16: 533–546.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, H.N., J.S. Park, D.G. Woo, S.Y. Jeon, H.-J. Do, H.-Y. Lim, J.-H. Kim, and K.-H. Park. 2011. C/EBP-α and C/EBP-β-mediated adipogenesis of human mesenchymal stem cells (hMSCs) using plga nanoparticles complexed with poly (ethyleneimmine). Biomaterials 32: 5924–5933.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., J.S. Lee, J. Kim, Y.B. Lee, H. Shin, S.H. Um, J.B. Kim, K.I. Park, H. Lee, and S.W. Cho. 2012. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials 33: 6952–6964.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, P.-H., J.-S. Sun, L.-H. Hwang, and T.-W. Wang. 2013. Stimuli-responsive Ha-PEI nanoparticles encapsulating endostatin plasmid for stem cell gene therapy. RSC Advances 3: 12922–12932.

    Article  CAS  Google Scholar 

  • Yilgor, P., K. Tuzlakoglu, R.L. Reis, N. Hasirci, and V. Hasirci. 2009. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30: 3551–3559.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, Ii Slukvin, and J.A. Thomson. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., K. Hu, K. Smuga-Otto, S. Tian, R. Stewart, Ii Slukvin, and J.A. Thomson. 2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324: 797–801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao, X., Z. Li, H. Pan, W. Liu, M. Lv, F. Leung, and W.W. Lu. 2013. Enhanced gene delivery by chitosan-disulfide-conjugated LMW-PEI for facilitating osteogenic differentiation. Acta Biomaterialia 9: 6694–6703.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q., and D.A. Melton. 2008. Extreme makeover: converting one cell into another. Cell Stem Cell 3: 382–388.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q., J. Brown, A. Kanarek, J. Rajagopal, and D.A. Melton. 2008. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455: 627–632.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, W., and C.R. Freed. 2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27: 2667–2674.

    Article  CAS  PubMed  Google Scholar 

  • Zoldan, J., A.K. Lytton-Jean, E.D. Karagiannis, K. Deiorio-Haggar, L.M. Bellan, R. Langer, and D.G. Anderson. 2011. Directing human embryonic stem cell differentiation by non-viral delivery of siRNA in 3D culture. Biomaterials 32: 7793–7800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant (2010-0020409) from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP), Republic of Korea. This work was also supported in part by a Grant (10035159) funded by the Ministry of Knowledge Economy, Republic of Korea. Jin Kim was supported by the NRF-2013-Global Ph.D. fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Cho.

Additional information

Hyun-Ji Park and Jisoo Shin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HJ., Shin, J., Kim, J. et al. Nonviral delivery for reprogramming to pluripotency and differentiation. Arch. Pharm. Res. 37, 107–119 (2014). https://doi.org/10.1007/s12272-013-0287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0287-z

Keywords

Navigation