Skip to main content
Log in

G-protein coupled receptor 40 agonists as novel therapeutics for type 2 diabetes

  • Report on Investigational Drugs
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

With growing needs for new antidiabetic drugs which are safe and effective alone or in combination with existing drugs, G-protein coupled receptor 40 (GPR40) has drawn a considerable attention as a potential therapeutic target for type 2 diabetes. As GPR40 agonist may offer advantages to commonly used agents, by acting ambient glucose dependent manner which mechanistically leads to reduced risk of developing hypoglycemia. Since deorphanization in 2003, development of small molecule GPR40 agonists has been spurred by several research groups. There are a number of lead molecules targeting GPR40, and among these molecules TAK-875 (full agonist) and AMG 837 (partial agonist) advanced into clinical stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Araki, T., M. Hirayama, S. Hiroi, and K. Kaku. 2012. GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes, Obesity & Metabolism 14: 271–278.

    Article  CAS  Google Scholar 

  • Bartoov-Shifman, R., G. Ridner, K. Bahar, N. Rubins, and M.D. Walker. 2007. Regulation of the gene encoding GPR40, a fatty acid receptor expressed selectively in pancreatic beta cells. The Journal of Biological Chemistry 282(32): 23561–23571.

    Google Scholar 

  • Briscoe, C.P., A.J. Peat, S.C. McKeown, D.F. Corbett, A.S. Goetz, T.R. Littleton, D.C. McCoy, T.P. Kenakin, J.L. Andrews, C. Ammala, J.A. Fornwald, D.M. Ignar, and S. Jenkinson. 2006. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. British Journal of Pharmacology 148: 619–628.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Burant, C.F., P. Viswanathan, J. Marcinak, C. Cao, M. Vakilynejad, B. Xie, and E. Leifke. 2012. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379: 1403–1411.

    Article  PubMed  CAS  Google Scholar 

  • Chao, E.C. 2012. Dapagliflozin: an evidence-based review of its potential in the treatment of type-2 diabetes. Core Evidence 7: 21–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gough, S.C., A. Bhargava, R. Jain, H. Mersebach, S. Rasmussen, and R.M. Bergenstal. 2013. Low-volume insulin degludec 200 units/mL once daily improves glycemic control similar to insulin glargine with a low risk of hypoglycemia in insulin-naïve patients with type 2 diabetes: a 26-week, randomized, controlled, multinational, treat-to-target trial: the BEGIN LOW VOLUME trial. Diabetes Care. doi:10.2337/dc12-2329.

    PubMed Central  Google Scholar 

  • Gravena, C., P.C. Mathias, and S.J. Ashcroft. 2002. Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. Journal of Endocrinology 173: 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Haber, E.P., H.M. Ximenes, J. Proco′pio, C.R. Carvalho, R. Curi, and A.R. Carpinelli. 2003. Pleiotropic effects of fatty acids on pancreatic ß-cells. Journal of Cellular Physiology 194: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Henquin, J.C. 2000. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49: 1751–1760.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, Y., Y. Kawamata, M. Harada, M. Kobayashi, R. Fujii, S. Fukusumi, K. Ogi, M. Hosoya, Y. Tanaka, H. Uejima, H. Tanaka, M. Maruyama, R. Satoh, S. Okubo, H. Kizawa, H. Komatsu, F. Matsumura, Y. Noguchi, T. Shinohara, S. Hinuma, Y. Fujisawa, and M. Fujino. 2003. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 13(422): 173–176.

    Article  CAS  Google Scholar 

  • Kim, S., Y.M. Kim, and Y.S. Kwak. 2012. A novel therapeutic target, GPR43; where it stands in drug discovery. Archives of Pharmacal Research 35: 1505–1509.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.H., S.H. Lee, and H.J. Yim. 2013. Gemigliptin, a novel dipeptidyl peptidase 4 inhibitor: first new anti-diabetic drug in the history of Korean pharmaceutical industry. Archives of Pharmacal Research 36: 1185–1188.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J., G. Swaminath, S.P. Brown, J. Zhang, Q. Guo, M. Chen, K. Nguyen, T. Tran, L. Miao, P.J. Dransfield, M. Vimolratana, J.B. Houze, S. Wong, M. Toteva, B. Shan, F. Li, R. Zhuang, and D.C. Lin. 2012. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One 7: e46300.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morgan, N.G., and S. Dhayal. 2009. G-protein coupled receptors mediating long chain fatty acid signaling in the pancreatic beta-cell. Biochemical Pharmacology 78: 1419–1427.

    Article  PubMed  CAS  Google Scholar 

  • Nagasumi, K., R. Esaki, K. Iwachidow, Y. Yasuhara, K. Ogi, H. Tanaka, M. Nakata, T. Yano, K. Shimakawa, S. Taketomi, K. Takeuchi, H. Odaka, and Y. Kaisho. 2009. Overexpression of GPR40 in pancreatic β-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 58: 1067–1076.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Naik, H., J. Lu, C. Cao, M. Pfister, M. Vakilynejad, and E. Leifke. 2013. Pharmacometric approaches to guide dose selection of the novel GPR40 agonist TAK-875 in subjects with Type 2 diabetes mellitus. Pharmacometrics & Systems Pharmacology 2: e22. doi:10.1038/psp.2012.23.

  • Negoro, N., S. Sasaki, S. Mikami, M. Ito, Y. Tsujihata, R. Ito, M. Suzuki, K. Takeuchi, N. Suzuki, J. Miyazaki, T. Santou, T. Odani, N. Kanzaki, M. Funami, A. Morohashi, M. Nonaka, S. Matsunaga, T. Yasuma, and Y. Momose. 2012. Optimization of (2,3-dihydro-1-benzofuran-3-yl)acetic acids: discovery of a non-free fatty acid-like, highly bioavailable G protein-coupled receptor 40/free fatty acid receptor 1 agonist as a glucose-dependent insulinotropic agent. Journal of Medicinal Chemistry 55: 3960–3974.

    Article  PubMed  CAS  Google Scholar 

  • Oh, D.Y., and W.S. Lagakos. 2011. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity. Current Opinion in Clinical Nutrition and Metabolic Care 14(4): 322–327.

    Article  PubMed  CAS  Google Scholar 

  • Prentki, M., K. Tornheim, and B.E. Corkey. 1997. Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia 40: S32–S41.

    Article  PubMed  CAS  Google Scholar 

  • Rosenstock, J., N. Aggarwal, D. Polidori, Y. Zhao, D. Arbit, K. Usiskin, G. Capuano, and W. Canovatchel. 2012. Canagliflozin DIA 2001 Study Group, dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabete. Diabetes Care 35: 1232–1238.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stein, D.T., V. Esser, B.E. Stevenson, K.E. Lane, J.H. Whiteside, M.B. Daniels, S. Chen, and J.D. McGarry. 1996. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. The Journal of Clinical Investigation 97: 2728–2735.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stenlöf, K., W.T. Cefalu, K.A. Kim, M. Alba, K. Usiskin, C. Tong, W. Canovatchel, and G. Meininger. 2013. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes, Obesity & Metabolism 15: 372–382.

    Article  CAS  Google Scholar 

  • Stratton, I.M., A.I. Adler, H.A. Neil, D.R. Matthews, S.E. Manley, C.A. Cull, D. Hadden, R.C. Turner, R.R. Holman, and Diabetes Study Group. 2000. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. British Medical Journal 321: 405–412.

    Google Scholar 

  • Swaminath, G. 2008. Fatty acid binding receptors and their physiological role in type 2 diabetes. Archiv der Pharmazie (Weinheim) 341: 753–761.

    Article  CAS  Google Scholar 

  • Tan, C.P., Y. Feng, Y.P. Zhou, G.J. Eiermann, A. Petrov, C. Zhou, S. Lin, G. Salituro, P. Meinke, R. Mosley, T.E. Akiyama, M. Einstein, S. Kumar, J.P. Berger, S.G. Mills, N.A. Thornberry, L. Yang, and A.D. Howard. 2008. Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 57: 2211–2219.

    Google Scholar 

  • Tsujihata, Y., R. Ito, M. Suzuki, A. Harada, N. Negoro, T. Yasuma, Y. Momose, and K. Takeuchi. 2011. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. Journal of Pharmacology and Experimental Therapeutics 339: 228–237.

    Article  PubMed  CAS  Google Scholar 

  • Vangaveti, V., V. Shashidhar, G. Jarrod, B.T. Baune, and R.L. Kennedy. 2010. Free fatty acid receptors: emerging targets for treatment of diabetes and its complications. Therapeutic Advances in Endocrinology and Metabolism 1: 165–175.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang, Y., Jie Hong, Jie Chi, W. Gu, Guang Ning, and W. Wang. 2013. Head-to-head comparison of dipeptidyl peptidase-IV inhibitors and sulphonylureas—A meta-analysis from randomized clinical trials. Diabetes Metab Res Rev. doi:10.1002/dmrr.2482.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the research fund of Hanyang University (HY-2012-00000002365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Yeun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.J., Shin, D. & Lee, JY. G-protein coupled receptor 40 agonists as novel therapeutics for type 2 diabetes. Arch. Pharm. Res. 37, 435–439 (2014). https://doi.org/10.1007/s12272-013-0283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0283-3

Keywords

Navigation