Skip to main content
Log in

Statistical optimization of a multivariate fermentation process for enhancing antibiotic activity of Streptomyces sp. CS392

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Antibiotic activity against various gram positive bacteria including Staphylococcus aureus and Enterococcus was ascertained from a soil-isolated microbial strain Streptomyces sp. CS392. The antibiotic activity of the strain was maximized by using a dual-stage, multivariate statistical optimization framework based on the response surface methodology considering a lab-scale fermentation process. Multiple nutrient constituents of the fermentation broth were jointly optimized in the first stage, while the fermentation culture conditions were optimized in the subsequent stage. Based on the empirical models derived from the dual-stage statistical optimization framework, 39.79 % of cumulative enhancement in the antibiotic activity was obtained (analytically) at the concurrent optimal settings (Optimal nutrient composition for the first stage of optimization: 29.82 glucose, 7.6 peptone, 4.678 MgCl2 and 0.5005 g/l casamino acid; and optimal fermentation condition for the second stage of optimization: incubation period 47.55 h; incubation temperature 29.15 °C; and pH 8.36). The analytically depicted enhancement in the antibiotic activity was validated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baş, D., and İ.H. Boyacı. 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering 78: 836–845.

    Article  Google Scholar 

  • Chen, X.-C., J.-X. Bai, J.-M. Cao, Z.-J. Li, J. Xiong, L. Zhang, Y. Hong, and H.-J. Ying. 2009. Medium optimization for the production of cyclic adenosine 3′,5′-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresource Technology 100: 919–924.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S.S., Y.H. Choi, J.R. Simkhada, P. Mander, and J.C. Yoo. 2012. A newly isolated Streptomyces sp. CS392 producing three antimicrobial compounds. Bioprocess and Biosystems Engineering 35: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Deleo, F.R., and H.F. Chambers. 2009. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. Journal of Clinical Investigation 119: 2464.

    Article  PubMed  CAS  Google Scholar 

  • Delisle, S., and T.M. Perl. 2003. Vancomycin-resistant Enterococci: A road map on how to prevent the emergence and transmission of antimicrobial resistance. Chest Journal 123: 504S–518S.

    Article  CAS  Google Scholar 

  • Fischbach, M.A., and C.T. Walsh. 2009. Antibiotics for emerging pathogens. Science 325: 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  • Gesheva, V. 2009. Optimization of the production medium for biosynthesis of antifungal antibiotic Ak-111-81 by phosphate-deregulated mutant of Streptomyces hygroscopicus. Applied Biochemistry and Biotechnology 158: 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Jamal Ibrahim, D., and M. Alam. 2010. Statistical optimization of fermentation conditions for cellulase production from palm oil mill effluent. American Journal of Environmental Sciences 6: 66–70.

    Article  Google Scholar 

  • Kammoun, R., B. Naili, and S. Bejar. 2008. Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresource Technology 99: 5602–5609.

    Article  PubMed  CAS  Google Scholar 

  • Khurana, S., M. Kapoor, S. Gupta, and R. Kuhad. 2007. Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology. Indian Journal of Microbiology 47: 144–152.

    Article  PubMed  CAS  Google Scholar 

  • Leardi, R. 2009. Experimental design in chemistry: A tutorial. Analytica Chimica Acta 652: 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Micek, S.T. 2007. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clinical Infectious Diseases 45: S184–S190.

    Article  PubMed  CAS  Google Scholar 

  • Song, J.-H., K. Hiramatsu, J.Y. Suh, K.S. Ko, T. Ito, M. Kapi, S. Kiem, Y.-S. Kim, W.S. Oh, and K.R. Peck. 2004. Emergence in asian countries of Staphylococcus aureus with reduced susceptibility to vancomycin. Antimicrobial Agents and Chemotherapy 48: 4926–4928.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, H.K., and M.R. Sen. 2006. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infectious Diseases 6: 156.

    Article  PubMed  Google Scholar 

  • Walsh, T.R., and R.A. Howe. 2002. The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus. Annual Review of Microbiology 56: 657–675.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y.-H., Y.-P. Li, Q. Zhang, and X. Zhang. 2008a. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization. Bioresource Technology 99: 1708–1715.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., X. Fang, F. An, G. Wang, and X. Zhang. 2011. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microbial Cell Factories 10: 1–15.

    Article  Google Scholar 

  • Wang, Y.H., J.T. Feng, Q. Zhang, and X. Zhang. 2008b. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology. Journal of Applied Microbiology 104: 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Watve, M.G., R. Tickoo, M.M. Jog, and B.D. Bhole. 2001. How many antibiotics are produced by the genus Streptomyces? Archives of Microbiology 176: 386–390.

    Article  PubMed  CAS  Google Scholar 

  • Weuster-Botz, D. 2000. Experimental design for fermentation media development: Statistical design or global random search? The Journal of Bioscience and Bioengineering 90: 473–483.

    CAS  Google Scholar 

  • Willems, R.J., J. Top, D. Marga Van Santen, T.M. Coque, F. Baquero, H. Grundmann, and M.J. Bonten. 2005. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerging Infectious Diseases 11: 821.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2010-0029178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Cheol Yoo.

Additional information

Poonam Mander and Yun Hee Choi contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mander, P., Choi, Y.H., Seong, J.H. et al. Statistical optimization of a multivariate fermentation process for enhancing antibiotic activity of Streptomyces sp. CS392. Arch. Pharm. Res. 36, 973–980 (2013). https://doi.org/10.1007/s12272-013-0140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0140-4

Keywords

Navigation