Skip to main content
Log in

Anti-inflammatory activities of crocetin derivatives from processed Gardenia jasminoides

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

This study was designed to investigate changes of anti-oxidant and anti-nitric oxide (NO) production activities of Gardenia jasminoides (Gj) by roast processing, and anti-inflammatory activities of crocetin derivatives isolated from Gj. In order to evaluate anti-oxidant and anti-inflammatory activities, DPPH radical scavenging activities and inhibitory activities against lipopolysaccharide (LPS)-induced NO production were determined. Then we isolated crocin (1), gentiobiosyl glucosyl crocetin (3), and mono-gentiobiosyl crocetin (4) from the fruit of Gj, and crocetin (2) from the processed fruit of Gj (PGj) by column chromatography. Their structures were based on spectroscopic methods including IR, MS, and NMR (1D and 2D). Then we assayed contents of crocetin derivatives by HPLC analysis. These crocetin derivatives were evaluated the inhibitory activities on NO production in LPS-stimulated macrophage RAW 264.7 cells and expressions of protein and m-RNA of iNOS and COX-2 by western blot analysis and RT-PCR experiment. The DPPH radical scavenging activities were increased and NO productions in LPS-stimulated RAW 264.7 cells were decreased dose-dependently by processing. Crocin contents were decreased and crocetin contents were increased by processing in HPLC analysis. Compounds 1, 2, 3 and 4 reduced NO production in a dose-dependent manner with IC50 values of 58.9 μM (1), 29.9 μM (2), 31.1 μM (3), and 37.6 μM (4) respectively. Crocetin (2) showed the most potent anti-inflammatory activity (IC50 = 29.9 μM), and compound 3 and 4 were firstly measured for inhibitory activities on NO production. Their correlation between structure and activity was not clear but the activity of aglycone type showed the most potent activity. They also suppressed the protein and m-RNA expressions of iNOS and COX-2 in LPS-activated macrophage. These results suggest that anti-oxidant and anti-NO production activities of Gj were increased by processing, and increased anti-inflammatory activities of Gj by processing were due to the increase of crocetin, the aglycone that has greater activity than crocin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aburada, M., H. Sasaki, and M. Harada. 1976. Pharmacological studies of gardenia fruits. II. Contribution of the constituent crude drugs to choleretic activity of ‘Inchinko-to’ in rats. Yakugaku Zasshi 96: 147–153.

    PubMed  CAS  Google Scholar 

  • Akhondzadeh, S., H. Fallah-Pour, K. Afkham, A.H. Jamshidi, and F. Khalighi-Cigaroudi. 2004. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression. BMC Complementary and Alternative Medicine 4: 12.

    Article  PubMed  Google Scholar 

  • Aktan, F. 2004. iNOS-mediated nitric oxide production and its regulation. Life Sciences 75: 639–653.

    Article  PubMed  CAS  Google Scholar 

  • Alderton, W.K., C.E. Cooper, and R.G. Knowles. 2001. Nitric oxide synthases. Biochemical Journal 357: 593–615.

    Article  PubMed  CAS  Google Scholar 

  • Bogdan, C., M. Röllinghoff, and A. Diefenbach. 2000. The role of nitric oxide in innate immunity. Immunological Reviews 173: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Calsteren, M.R., M.C. Bissonnette, F. Cormier, C. Dufresne, I. Takahito, J.C. LeBlanc, D. Perreault, and I. Roewer. 1997. Spectroscopic characterization of crocetin derivatives from Crocus sativus and Gardenia jasminoides. Journal of Agriculture and Food Chemistry 45: 1055–1061.

    Article  Google Scholar 

  • Chang, W.C., Y.L. Lin, M.J. Lee, S.J. Shiow, and C.J. Wang. 1996. Inhibitory effect of crocetin on benzo(a)pyrene genotoxicity and neoplastic transformation in C3H10T1/2 cells. Anticancer Research 16: 3603–3608.

    PubMed  CAS  Google Scholar 

  • Choi, H.J., Y.S. Park, M.G. Kim, T.K. Kim, N.S. Yoon, and Y.J. Lim. 2001. Isolation and characterization of the major colorant in Gardenia fruit. Dyes and Pigment 49: 15–20.

    Article  CAS  Google Scholar 

  • Davis, K.L., E. Martin, I.V. Turko, and F. Murad. 2001. Novel effects of nitric oxide. Annual Review of Pharmacology and Toxicology 41: 203–236.

    Article  PubMed  CAS  Google Scholar 

  • Escribano, J., G.L. Alonso, M. Coca-Prados, and J.A. Fernandez. 1996. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters 100: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Gross, S.S., and M.S. Wolin. 1995. Nitric oxide. Annual Review of Physiology 57: 737–769.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Z., Z. Yuhong, Y. Fang, C. Fang, Z. Xinshen, L. Minhua, and L. Weiguo. 2004. Semi-preparative isolation of crocins from Saffron (Crocus sativus L.). Chromatographia 59: 691–696.

    Google Scholar 

  • Hsu, J.D., F.P. Chou, M.J. Lee, H.C. Chiang, Y.L. Lin, S.J. Shiow, and C.J. Wang. 1999. Suppression of the TPA-induced expression of nuclear-protooncogenes in mouse epidermis by crocetin via antioxidant activity. Anticancer Research 19: 4221–4227.

    PubMed  CAS  Google Scholar 

  • Lee, I.A., J.H. Lee, N.I. Baek, and D.H. Kim. 2005. Antihyperlipidemic effect of crocin isolated from the ructus of Gardenia jasminoides and its metabolite crocetin. Biological and Pharmaceutical Bulletin 28: 2106–2110.

    Article  PubMed  CAS  Google Scholar 

  • Marcinkiewicz, J., A. Grabowska, and B. Chain. 1995. Nitric oxide upregulates the release of inflammatory mediators by mouse macrophages. European Journal of Immunology 25: 947–951.

    Article  PubMed  CAS  Google Scholar 

  • Miyasita, S. 1976. A historical study of Chinese drugs for the treatment of jaundice. The American Journal of Medicine 4: 239–243.

    CAS  Google Scholar 

  • Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival. Journal of Immunological methods 65: 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Papandreou, M.A., C.D. Kanakis, M.G. Polissiou, S. Efthimiopoulos, P. Cordopatis, M. Margarity, and F.N. Lamari. 2006. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. Journal of Agriculture and Food Chemistry 54: 8762–8768.

    Article  CAS  Google Scholar 

  • Pfister, S., P. Meyer, A. Steck, and H. Pfander. 1996. Isolation and structure elucidation of carotenoid-glycosyl esters in gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). Journal of Agriculture and Food Chemistry 44: 2612–2615.

    Article  CAS  Google Scholar 

  • Pham, T.Q., F. Cormier, E. Farnworth, V.H. Tong, and M.R. Calsteren. 2000. Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. Journal of Agriculture and Food Chemistry 48: 1455–1461.

    Article  CAS  Google Scholar 

  • Raghav, S.K., B. Gupta, A. Shrivastava, and H.R. Das. 2007. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1β through suppression of NF-κB activation by 3-(1′,1′-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L. European Journal of Pharmacology 560: 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Rios, J.L., M.C. Recio, R.M. Giner, and S. Manez. 1996. An update review of saffron and its active constituents. Phytotherapy Research 10: 189–193.

    Article  CAS  Google Scholar 

  • Tseng, T.H., C.Y. Chu, J.M. Huang, S.J. Shiow, and C.J. Wang. 1995. Crocetin protects against damage in rat primary hepatocytes. Cancer Letters 97: 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Shin, Y.W., D.H. Kim, and N.J. Kim. 2003. Studies on the processing of crude drugs (VII)—On the constituents and biological activities of Gardeniae Fructus by processing. Korean Journal of Pharmacognosy 34: 45–54.

    Google Scholar 

  • Stamlar, J.S., D.J. Singel, and J. Loscalzo. 1992. Biochemistry of nitric oxide and its redox-activated forms. Science 258: 1898–1902.

    Article  Google Scholar 

  • Yang, R., X. Tan, A.M. Thomas, J. Shen, N. Qureshi, D.C. Morrison, and C.W. Van Way III. 2006. Crocetin inhibits mRNA expression for tumor necrosis factor-alpha, interleukin-1beta, and inducible nitric oxide synthase in hemorrhagic shock. Journal of Parenteral and Enteral Nutrition. 30(4): 297–301.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This Research was supported by the Sookmyung Women’s University Research Grants 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Sook Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, YJ., Yang, KS. Anti-inflammatory activities of crocetin derivatives from processed Gardenia jasminoides . Arch. Pharm. Res. 36, 933–940 (2013). https://doi.org/10.1007/s12272-013-0128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0128-0

Keywords

Navigation