Skip to main content

Advertisement

Log in

Synthesis, cytotoxicity and QSAR study of N-tosyl-1,2,3,4-tetrahydroisoquinoline derivatives

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

1-Substituted-N-tosyl-1,2,3,4-tetrahydroisoquinoline analogs (4a–4l) were synthesized using the modified Pictet–Spengler reaction and evaluated for cytotoxicity. All tetrahydroisoquinolines displayed cytotoxicity against MOLT-3 cell lines, except for p-methoxy analog 4d. Interestingly, the o-hydroxy derivative 4k was shown to be the most potent cytotoxic against HuCCA-1, A-549 and MOLT-3 cell lines. The lowest IC50 value of 1.23 μM was observed for MOLT-3 cells. Trimethoxy analog 4f exerted the most potent activity against HepG2 with an IC50 of 22.70 μM, which is lower than the reference drug, etoposide. QSAR studies showed that total symmetry index (Gu), 3D-MoRSE (Mor31v and Mor32u) and 3D Petitjean index (PJI3) were the most important descriptors accounting for the observed cytotoxicities. The most potent cytotoxic compound (4k) against MOLT-3 had the highest Gu value, correspondingly the inactive p-methoxy analog (4d) had the lowest Gu value. On the other hand, the highest molecular mass compound (4f) was shown to be the most potent cytotoxic against HepG2 cells. The studies disclose that tetrahydroisoquinolines 4f and 4k are potentially interesting lead pharmacophores that should be further explored. The QSAR models provided insights into the physicochemical properties of the investigated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  • Alves, C.N., J.C. Pinheiro, A.J. Camargo, M.M.C. Ferreira, R.A.F. Romero, and A.B.F. da Silva. 2001. A multiple linear regression and partial least squares study of flavonoid compounds with anti-HIV activity. Journal of Molecular Structure (Theochem) 541: 81–88.

    Article  CAS  Google Scholar 

  • Barn, D.R., W.L. Caulfield, J. Cottney, K. McGurk, J.R. Morphy, Z. Rankovic, and B. Roberts. 2001. Parallel synthesis and biological activity of a new class of high affinity and selective δ-opioid ligand. Bioorganic & Medicinal Chemistry 9: 2609–2624.

    Article  CAS  Google Scholar 

  • Bentley, K.W. 1998. The isoquinoline alkaloids. Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Bermejo, A., I. Andreu, F. Suvire, S. Léonce, D.H. Caignard, P. Renard, A. Pierré, R.D. Enriz, D. Cortes, and N. Cabedo. 2002. Syntheses and antitumor targeting G1 phase of the cell cycle of benzoyldihydroisoquinolines and related 1-substituted isoquinolines. Journal of Medicinal Chemistry 45: 5058–5068.

    Article  PubMed  CAS  Google Scholar 

  • Bourdier, T., G. Poisnel, M. Dhilly, J. Delamare, J. Henry, D. Debruyne, and L. Barré. 2007. Synthesis and biological evaluation of N-substituted quinolinimides, as potential ligands for in vivo imaging studies of δ-opioid receptors. Bioconjugate Chemistry 18: 538–548.

    Article  PubMed  CAS  Google Scholar 

  • Cox, E.D., and J.M. Cook. 1995. The Pictet–Spengler condensation: A new direction for an old reaction. Chemical Reviews 95: 1797–1842.

    Article  CAS  Google Scholar 

  • Cui, W., K. Iwasa, H. Tokuda, A. Kashihara, Y. Mitani, T. Hasegawa, Y. Nishiyama, M. Moriyasu, H. Nishino, M. Hanaoka, C. Mukai, and K. Takeda. 2006. Potential cancer chemopreventive activity of simple isoquinolines, 1-benzylisoquinolines, and protoberberines. Phytochemistry 67: 70–79.

    Article  PubMed  CAS  Google Scholar 

  • Dennington II, R., T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, and R. Gilliland. 2003. GaussView, Version 3.09. Shawnee Mission: Semichem, Inc.

  • Frisch, M.J., G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople. 2004. Gaussian 03, Revision C.02. Wallingford: Gaussian, Inc.

    Google Scholar 

  • Gitto, R., S. Agnello, S. Ferro, L. De Luca, D. Vullo, J. Brynda, P. Mader, C.T. Supuran, and A. Chimirri. 2010. Identification of 3,4-dihydroisoquinoline-2(1H)-sulfonamide as potent carbonic anhydrase inhibitors: Synthesis, biological evaluation, and enzyme–ligand X-ray studies. Journal of Medicinal Chemistry 53: 2401–2408.

    Article  PubMed  CAS  Google Scholar 

  • Gitto, R., S. Ferro, S. Agnello, L. De Luca, G. De Sarro, E. Russo, D. Vullo, C.T. Supuran, and A. Chimirri. 2009. Synthesis and evaluation of pharmacological profile of 1-aryl-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamides. Bioorganic & Medicinal Chemistry 17: 3659–3664.

    Article  CAS  Google Scholar 

  • González, J.F., E. de la Cuesta, and C. Avendaño. 2007a. Synthesis and cytotoxic activity of pyrazino[1,2-b]-isoquinolines, 1-(3-isoquinolyl)isoquinolines, and 6,15-iminoisoquino[3,2-b]-3-benzazocines. Bioorganic & Medicinal Chemistry 15: 112–118.

    Article  Google Scholar 

  • González, M.P., C. Terán, M. Teijeira, and A.M. Helguera. 2007b. QSAR studies using radial distribution function for predicting A1 adenosine receptors agonists. Bulletin of Mathematical Biology 69: 347–359.

    Article  PubMed  Google Scholar 

  • Gosav, S., M. Praisler, and D.O. Dorohoi. 2007. ANN expert system screening for illicit amphetamines using molecular descriptors. Journal of Molecular Structure 834–836: 188–194.

    Article  Google Scholar 

  • Grunewald, G.L., F.A. Romero, and K.R. Criscione. 2005. 3-Hydroxymethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinoline inhibitors of phenylethanolamine N-methyltransferase that display remarkable potency and selectivity. Journal of Medicinal Chemistry 48: 134–140.

    Article  PubMed  CAS  Google Scholar 

  • Habibi-Yangjeh, A., E. Pourbasheer, and M. Danandeh-Jenagharad. 2009. Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen containing compounds in water. Monatshefte fuer Chemie 140: 15–27.

    Article  CAS  Google Scholar 

  • Hazebroucq, G. 1966. 2,3,4,5-Tetrahydro-1H-3-benzazepin-1-ones and hexahydroimidazoisoquinoleines. Annales de Chimie 1: 221–254.

    CAS  Google Scholar 

  • Hu, L., Z.-R. Li, J.–.D. Jiang, and D.W. Boykin. 2008. Novel diaryl or heterocyclic sulfonamides as antimitotic agents. Anti-Cancer Agents. Medicinal Chemistry 8: 739–745.

    Article  CAS  Google Scholar 

  • Huszár, J., Z. Timár, K.K. Szalai, G. Keseru, F. Fülöp, and B. Penke. 2008. Novel bradykinin-1 antagonists containing a (1,2,3,4-tetrahydro-isoquinolin-1-yl)acetic acid scaffold. European Journal of Medicinal Chemistry 43: 1552–1558.

    Article  PubMed  Google Scholar 

  • Ito, K., and H. Tanaka. 1977. Syntheses of 1,2,3,4-tetrahydroisoquinolines from N-sulfonyl-phenethylamines and aldehydes. Chemical & Pharmaceutical Bulletin 25: 1732–1739.

    Article  CAS  Google Scholar 

  • Iwasa, K., M. Moriyasu, Y. Tachibana, H.S. Kim, Y. Wataya, W. Wiegrebe, K.F. Bastow, L.M. Cosentino, M. Kozuka, and K.H. Lee. 2001. Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents. Bioorganic & Medicinal Chemistry 9: 2871–2884.

    Article  CAS  Google Scholar 

  • Karelson, M., V.S. Lobanov, and A.R. Katritzky. 1996. Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews 96: 1027–1044.

    Article  PubMed  CAS  Google Scholar 

  • Larghi, E.L., M. Amongero, A.B.J. Bracca, and T.S. Kaufman. 2005. The intermolecular Pictet–Spengler condensation with chiral carbonyl derivatives in the stereoselective syntheses of optically active isoquinoline and indole alkaloids. ARKIVOC 12: 98–153.

    Article  Google Scholar 

  • Lukanov, L.K., A.P. Venkov, and N.M. Mollov. 1987. Application of the intramolecular α-amidoalkylation reaction for the synthesis of 2-arylsulfonyl-1,2,3,4-tetrahydroisoquinolines. Synthesis 1987: 204–206.

    Article  Google Scholar 

  • Ma, D., W. Wu, G. Yang, J. Li, J. Li, and Q. Ye. 2004. Tetrahydroisoquinoline based sulfonamide hydroxamates as potent matrix metalloproteinase inhibitors. Bioorganic & Medicinal Chemistry Letters 14: 47–50.

    Article  Google Scholar 

  • Matter, H., M. Schudok, W. Schwab, W. Thorwart, D. Barbier, G. Billen, B. Haase, B. Neises, K.-U. Weithmann, and T. Wollmann. 2002. Tetrahydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: Design, synthesis and structure–activity relationship. Bioorganic & Medicinal Chemistry 10: 3529–3544.

    Article  CAS  Google Scholar 

  • Matter, H., and W. Schwab. 1999. Affinity and selectivity of matrix metalloproteinase inhibitors: A chemometrical study from the perspective of ligands and proteins. Journal of Medicinal Chemistry 42: 4506–4523.

    Article  PubMed  CAS  Google Scholar 

  • Nantasenamat, C., C. Isarankura-Na-Ayudhya, T. Naenna, and V. Prachayasittikul. 2007a. Quantitative structure-imprinting factor relationship of molecularly imprinted polymers. Biosensors & Bioelectronics 22: 3309–3317.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., C. Isarankura-Na-Ayudhya, T. Naenna, and V. Prachayasittikul. 2008a. Prediction of bond dissociation enthalpy of antioxidant phenols by support vector machine. Journal of Molecular Graphics and Modelling 27: 188–196.

    Article  PubMed  CAS  Google Scholar 

  • Nantasenamat, C., C. Isarankura-Na-Ayudhya, T. Naenna, and V. Prachayasittikul. 2009. A practical overview of quantitative structure–activity relationship. EXCLI Journal 8: 74–88.

    Google Scholar 

  • Nantasenamat, C., C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2010. Advances in computational methods to predict the biological activity of compounds. Expert Opinion on Drug Discovery 5: 633–654.

    Article  PubMed  CAS  Google Scholar 

  • Nantasenamat, C., C. Isarankura-Na-Ayudhya, N. Tansila, T. Naenna, and V. Prachayasittikul. 2007b. Prediction of GFP spectral properties using artificial neural network. Journal of Computational Chemistry 8: 1275–1289.

    Article  Google Scholar 

  • Nantasenamat, C., T. Naenna, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2005. Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. Journal of Computer-Aided Molecular Design 19: 509–524.

    Article  PubMed  CAS  Google Scholar 

  • Nantasenamat, C., T. Piacham, T. Tantimongcolwat, T. Naenna, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2008b. QSAR model of the quorum-quenching N-acyl-homoserine lactone lactonase activity. Journal of Biological Systems 16: 279–293.

    Article  CAS  Google Scholar 

  • Orazi, O.O., R.A. Corral, and H. Giaccio. 1986. Synthesis of fused heterocycles: 1,2,3,4-tetrahydroisoquinoline ring homologues via sulphonamidomethylation. Journal of the Chemical Society, Perkin Transactions 1: 1977–1982.

    Article  Google Scholar 

  • Parr, R.G., R.A. Donnelly, M. Levy, and W.E. Palke. 1978. Electronegativity: The density functional viewpoint. Journal of Chemical Physics 68: 3801–3807.

    Article  CAS  Google Scholar 

  • Parr, R.G., and R.G. Pearson. 1983. Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society 105: 7512–7516.

    Article  CAS  Google Scholar 

  • Parr, R.G., L.V. Szentpaly, and S. Liu. 1999. Electrophilicity index. Journal of the American Chemical Society 121: 1922–1924.

    Article  CAS  Google Scholar 

  • Pingaew, R., S. Prachayasittikul, S. Ruchirawat, and V. Prachayasittikul. 2013. Synthesis and cytotoxicity of novel N-sulfonyl-1,2,3,4-tetrahydroisoquinoline thiosemicarbazone derivatives. Medicinal Chemistry Research 22: 267–277.

    Article  CAS  Google Scholar 

  • Prachayasittikul, S., O. Wongsawatkul, A. Worachartcheewan, C. Nantasenamat, S. Ruchirawat, and V. Prachayasittikul. 2010. Elucidating the structure–activity relationships of the vasorelaxation and antioxidation properties of thionicotinic acid derivatives. Molecules 15: 198–214.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, T., K. Abe, M. Ishikawa, M. Nakatani, S. Shimazu, N. Satoh, F. Yoneda, K. Taguchi, and Y. Horiguchi. 2006. Synthesis and in vitro cytotoxicity of 1,2,3,4-tetrahydroisoquinoline derivatives. European Journal of Medicinal Chemistry 41: 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.D., and R.M. Williams. 2002. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chemical Reviews 102: 1669–1730.

    Article  PubMed  CAS  Google Scholar 

  • Scozzafava, A., T. Owa, A. Mastrolorenzo, and C.T. Supuran. 2003. Anticancer and antiviral sulfonamides. Current Medicinal Chemistry 10: 925–953.

    Article  PubMed  CAS  Google Scholar 

  • Siengalewicz, P., U. Rinner, and J. Mulzer. 2008. Recent progress in the total synthesis of naphthyridnomycin and lemonomycin tetrahydroisoquinoline antibiotics (TAAs). Chemical Society Reviews 37: 2676–2690.

    Article  PubMed  CAS  Google Scholar 

  • Silveira, C.C., C.R. Bernardi, A.L. Braga, and T.S. Kaufman. 1999. Pictet–Spengler condensation of N-sulfonyl-β-phenethylamines with α-chloro-α-phenylselenoesters. New synthesis of 1,2,3,4-tetrahydroisoquinoline-1-carboxylates. Tetrahedron Letters 40: 4969–4972.

    Article  CAS  Google Scholar 

  • Silveira, C.C., C.R. Bernardi, A.L. Braga, and T.S. Kaufman. 2003. Thioorthoesters in the activated Pictet–Spengler cyclization. Synthesis of 1-thiosubstituted tetrahydroisoquinolines and carbon–carbon bond formation via sulfonyl iminium ions generated from N,S-sulfonyl acetals. Tetrahedron Letters 44: 6137–6140.

    Article  CAS  Google Scholar 

  • Silveira, C.C., A.S. Vieira, and T.S. Kaufman. 2006. Thiophenol-mediated improvement of the Pictet–Spengler cyclization of N-tosyl-β-phenethylamines with aldehydes. Tetrahedron Letters 47: 7545–7549.

    Article  CAS  Google Scholar 

  • Suksrichavalit, T., S. Prachayasittikul, C. Nantasenamat, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2009. Copper complexes of pyridine derivatives with superoxide scavenging and antimicrobial activities. European Journal of Medicinal Chemistry 44: 3259–3265.

    Article  PubMed  CAS  Google Scholar 

  • Suvannang, N., C. Nantasenamat, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2011. Molecular docking of aromatase inhibitors. Molecules 16: 3597–3617.

    Article  CAS  Google Scholar 

  • Talete srl. 2007. Dragon for Windows (Software for Molecular Descriptor Calculations), version 5.5. Milano: Talete srl.

  • Tengchaisri, T., R. Chawengkirttikul, N. Rachaphaew, V. Reutrakul, R. Sangsuwan, and S. Sirisinha. 1998. Antitumor activity of triptolide against cholangiocarcinoma growth in vitro and in hamsters. Cancer Letters 133: 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Thanikaivelan, P., V. Subramanian, J. Raghava Rao, and B. Unni Nair. 2000. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chemical Physics Letters 323: 59–70.

    Article  CAS  Google Scholar 

  • Whitley, D.C., M.G. Ford, and D.J. Livingstone. 2000. Unsupervised forward selection: A method for eliminating redundant variables. Journal of Chemical Information and Computer Sciences 40: 1160–1168.

    PubMed  CAS  Google Scholar 

  • Witten, I.H., E. Frank, and M.A. Hall. 2011. Data mining: Practical machine learning tools and techniques, 3rd ed. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Worachartcheewan, A., C. Nantasenamat, C. Isarankura-Na-Ayudhya, S. Prachayasittikul, and V. Prachayasittikul. 2011. Predicting the free radical scavenging activity of curcumin derivatives. Chemometrics and Intelligent Laborary Systems 109: 207–216.

    Article  CAS  Google Scholar 

  • Worachartcheewan, A., C. Nantasenamat, T. Naenna, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2009. Modeling the activity of furin inhibitors using artificial neural network. European Journal of Medicinal Chemistry 44: 1664–1673.

    Article  PubMed  CAS  Google Scholar 

  • Worachartcheewan, A., S. Prachayasittikul, R. Pingaew, C. Nantasenamat, T. Tantimongcolwat, S. Ruchirawat, and V. Prachayasittikul. 2012. Antioxidant, cytotoxicity, and QSAR study of 1-adamantylthio derivatives of 3-picoline and phenylpyridines. Medicinal Chemistry Research 21: 3514–3522.

    Article  CAS  Google Scholar 

  • Zhang, H., Q.Y. Chen, M.L. Xiang, C.Y. Ma, Q. Huang, and S.Y. Yang. 2009. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicology in Vitro 23: 134–140.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the research grant supported by Srinakharinwirot University (B.E. 2555). This project is supported by Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative. R.P. sincerely thanks the financial support from the Science and Technology Research Grant of the Thailand Toray Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ratchanok Pingaew or Virapong Prachayasittikul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pingaew, R., Worachartcheewan, A., Nantasenamat, C. et al. Synthesis, cytotoxicity and QSAR study of N-tosyl-1,2,3,4-tetrahydroisoquinoline derivatives. Arch. Pharm. Res. 36, 1066–1077 (2013). https://doi.org/10.1007/s12272-013-0111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0111-9

Keywords