Skip to main content
Log in

A comparison of the antinociceptive and temperature responses to morphine and fentanyl derivatives in rats

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In addition to producing antinociception, opioids exert profound effects on body temperature. This study aimed at comparing antinociceptive and hyperthermic responses between two groups of μ-opioid receptor agonists: fentanyl (4-anilinopiperidine-type) and morphine (phenanthrene-type) derivatives in rats. Analgesic activity was assessed by tail immersion test and the body temperature by insertion of a thermometer probe into the colon. Fentanyl (F), (±)-cis-3-methyl fentanyl (CM), (±)-cis-3-carbomethoxy fentanyl (C), (±)trans-3-carbomethoxy fentanyl (T) and (±)-cis-3 butyl fentanyl (B) produced dose-dependent increase in antinociception and hyperthermia. The relative order of analgesic potency was: CM(11.27)>F(1)>C(0.35)≥T(0.11)≥B(0.056). Similar to this, the relative order of hyperthermic potency was: CM(8.43)>F(1)>C(0.46)≥T(0.11)≥B(0.076). Morphine (M), oxycodone (O), thebacon (T) and 6,14-ethenomorphinan-7-methanol, 4,5-epoxy-6-fluoro-3-hydroxy-α,α,17-trimethyl-, (5α,7α) (E) also produced dose-dependent increase in antinociception and hyperthermia. Among morphine derivatives the relative order of analgesic potency was: E(56)>O(5)≥T(2.6)>M(1), and similar to this, the relative order of hyperthermic potency was: E(37)>O(3)≥T(2.3)>M(1). Morphine (phenanthrene-type) and fentanyl (4-anilinopiperidine-type) derivatives produced hyperthermia in rats at doses about 2 times lower, and 6–11 times higher, than their median antinociceptive doses, respectively. This study is first to identify difference between these two classes of opioid drugs in their potencies in producing hyperthermia. Further studies are needed to clarify the significance of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler, M.W., and E.B. Geller. 1989. Thermoregulation and the opioid system. NIDA Research Monograph 95: 180–185.

    PubMed  CAS  Google Scholar 

  • Baker, A.K., and T.F. Meert. 2002. Functional effects of systemically administered agonists and antagonists of mu, delta, and kappa opioid receptor subtypes on body temperature in mice. Journal of Pharmacology and Experimental Therapeutics 302: 1253–1264.

    Article  PubMed  CAS  Google Scholar 

  • Benamar, K., M. Yondorf, V.T. Barreto, E.B. Geller, and M.W. Adler. 2007. Deletion of mu-opioid receptor in mice alters the development of acute neuroinflammation. Journal of Pharmacology and Experimental Therapeutics 323: 990–994.

    Article  PubMed  CAS  Google Scholar 

  • Berenyi, S., Z. Toth, A. Sepsi, A. Zekany, S. Gyulai, and S. Makleit. 1995. Synthesis and biological evaluation of some halogenated 6,14-ethenomorphinan derivatives. Medicinal Chemistry Research 5(1): 26–32.

    CAS  Google Scholar 

  • Bourne, H., and M. von Zastrow. 2007. Drug receptors & pharmacodynamics. In Basic and Clinical Pharmacology, ed. B.G. Katzung, 11–33. New York: The McGraw-Hill Companies Inc.

    Google Scholar 

  • Cao, W.H., and S.F. Morrison. 2005. Brown adipose tissue thermogenesis contributes to fentanyl-evoked hyperthermia. American Journal of Physiology 288: 723–732.

    Google Scholar 

  • Chen, X., D.B. McClatchy, E.B. Geller, R.J. Tallarida, and M.W. Adler. 2005. The dynamic relationship between mu and kappa opioid receptors in body temperature regulation. Life Sciences 78: 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M.P. 2012. Evidence from basic research for opioid combinations. Expert Opinion on Drug Discovery 7: 165–178.

    Article  PubMed  CAS  Google Scholar 

  • Dietis, N., D.J. Rowbotham, and D.G. Lambert. 2011. Opioid receptor subtypes: fact or artifact? British Journal of Anaesthesia 107: 8–18.

    Article  PubMed  CAS  Google Scholar 

  • Došen-Mićović, Lj., M. Ivanović, and V. Mićović. 2006. Steric interactions and the activity of fentanyl analogs at the mu-opioid receptor. Bioorganic & Medicinal Chemistry 14: 2887–2895.

  • Groer, C.E., C.L. Schmid, A.M. Jaeger, and L.M. Bohn. 2011. Agonist-directed interactions with specific beta-arrestins determine mu-opioid receptor trafficking, ubiquitination, and dephosphorylation. Journal of Biological Chemistry 286: 31731–31741.

    Article  PubMed  CAS  Google Scholar 

  • Fraga, D., R.R. Machado, L.C. Fernandes, G.E. Souza, and A.R. Zampronio. 2008. Endogenous opioids: role in prostaglandin-dependent and -independent fever. American Journal of Physiology 294: 411–420.

    Google Scholar 

  • Ivanović, M.D., I.V. Mićović, S. Vučković, M. Prostran, Z. Todorović, V.D. Kricojević, J.B. Djordjević, and Lj. Došen-Mićović. 2004. The synthesis and preliminary pharmacological evaluation of the racemic cis and trans 3-alkylfentanyl analogues. Journal of the Serbian Chemical Society 69: 511–526.

    Article  Google Scholar 

  • Janssen, P.A.J., C.J.E. Niemegeers, and J.G.H. Dony. 1963. The inhibitory effect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawal reflex in rats. Arzneimittel-Forsch (Drug Research) 13: 502–507.

    CAS  Google Scholar 

  • Kissin, I., R. Kerr, and L.R. Smith. 1983. Assessment of anaesthetic action of morphine and fentanyl in rats. Canadian Anaesthetists Society Journal 30: 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y.F., H. Xu, L.Y. Liu-Chen, C. Chen, J.S. Partilla, G.A. Brine, F.I. Carroll, K.C. Rice, J. Lai, F. Porreca, W. Sadee, and R.B. Rothman. 1998. Opioid peptide receptor studies. 7. The methylfentanyl congener RTI-4614-4 and its four enantiomers bind to different domains of the rat mu opioid receptor. Synapse (New York, NY) 28: 117–124.

    Article  CAS  Google Scholar 

  • Mićović, I.V., M.D. Ivanović, S. Vučković, D. Jovanović-Mićić, D. Beleslin, Lj. Došen-Mićović, and V.D. Kiricojević. 1998. 3-Carbomethoxy fentanyl: synthesis, pharmacology and conformational analysis. Heterocyclic Communications 4: 171–179.

    Google Scholar 

  • Nozaki, C., B. Le Bourdonnec, D. Reiss, R.T. Windh, P.J. Little, R.E. Dolle, B.L. Kieffer, and C. Gavériaux-Ruff. 2012. δ-Opioid Mechanisms for ADL5747 and ADL5859 effects in mice: analgesia, locomotion, and receptor internalization. Journal of Pharmacology and Experimental Therapeutics 342: 799–807.

    Article  PubMed  CAS  Google Scholar 

  • Pradhan, A.A., M.L. Smith, B.L. Kieffer, and C.J. Evans. 2012. Ligand-directed signaling within the opioid receptor family. British Journal of Pharmacology 167: 960–969.

    Article  PubMed  CAS  Google Scholar 

  • Rawls, S.M., and K. Benamar. 2011. Effects of opioids, cannabinoids, and vanilloids on body temperature. Frontiers in Bioscience (Scholar Edition) 3: 822–845.

    Article  Google Scholar 

  • Rivero, G., J. Llorente, J. McPherson, A. Cooke, S.J. Mundell, C.A. McArdle, E.M. Rosethorne, S.J. Charlton, C. Krasel, C.P. Bailey, G. Henderson, and E. Kelly. 2012. Endomorphin-2: a biased agonist at the μ-opioid receptor. Molecular Pharmacology 82: 178–188.

    Article  PubMed  CAS  Google Scholar 

  • Rives, M.L., M. Rossillo, L.Y. Liu-Chen, and J.A. Javitch. 2012. 6′-Guanidinonaltrindole (6′-GNTI) is a G protein-biased κ-opioid receptor agonist that inhibits arrestin recruitment. Journal of Biological Chemistry 287: 27050–27054.

    Article  PubMed  CAS  Google Scholar 

  • Tomić, M.A., S.M. Vučković, R.M. Stepanović-Petrović, N.D. Ugrešić, M.S. Prostran, and B. Bošković. 2010. Synergistic interactions between paracetamol and oxcarbazepine in somatic and visceral pain models in rodents. Anesthesia and Analgesia 110: 1198–1205.

    PubMed  Google Scholar 

  • Tallarida, R.J., and R.B. Murray. 1986. Manual of pharmacologic calculations with computer programs. New York: Springer.

    Book  Google Scholar 

  • Vučković, S., M. Ivanović, M. Prostran, Z. Todorović, Z. Ristović, I. Micović, and D. Beleslin. 1998. Higher environmental temperature potentiates cataleptic effect of fentanyl in rats. Japanese Journal of Pharmacology 78: 523–527.

    Article  PubMed  Google Scholar 

  • Vučković, S., M. Prostran, M. Ivanović, Z. Ristović, and R. Stojanović. 2000. Antinociceptive activity of the novel fentanyl analogue iso-carfentanil in rats. Japanese Journal of Pharmacology 84: 188–195.

    Article  PubMed  Google Scholar 

  • Vučković, S., M. Prostran, M. Ivanović, Lj. Došen-Mićović, Z. Todorović, Z. Nešić, R. Stojanović, N. Divac, and Ž. Miković. 2009. Fentanyl analogs: structure-activity-relationship study. Current Medicinal Chemistry 16: 2468–2474.

    Article  PubMed  Google Scholar 

  • Yang, P.K., M.B. Weinger, and S.S. Negus. 1992. Elucidation of dose-effect relationships for different opiate effects using alfentanil in the spontaneously ventilating rat. Anesthesiology 77: 153–161.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Education, Science and Technological Development of Serbia (Grant No. 175023). The author would like to convey thanks to Alkaloid (Skopje, Macedonia) and University of Debrecen, Hungary, who gifted us some of the compounds tested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina R. Savić Vujović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savić Vujović, K.R., Vučković, S., Srebro, D. et al. A comparison of the antinociceptive and temperature responses to morphine and fentanyl derivatives in rats. Arch. Pharm. Res. 36, 501–508 (2013). https://doi.org/10.1007/s12272-013-0072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0072-z

Keywords

Navigation