Archives of Pharmacal Research

, Volume 36, Issue 3, pp 353–358 | Cite as

miR-7641 modulates the expression of CXCL1 during endothelial differentiation derived from human embryonic stem cells

  • Jung Ki Yoo
  • Ho Yong Jung
  • Chang-Hyun Kim
  • Woo Sung SonEmail author
  • Jin Kyeoung KimEmail author
Research Article


MicroRNAs (miRNAs) are a class of small noncoding RNAs that negatively regulate gene expression through binding to 3′ untranslated region. We identified and characterized the novel miRNA, miR-7641, in human mesenchymal stem cells. The expression of miR-7641 was downregulated during differentiation from human embryonic stem cells to endothelial cells. The CXCL1, a member of the CXC chemokine family, is known as promoting neovascularization by binding G-protein coupled receptors and is related to endothelial cells biogenesis such as angiogenesis, and it was predicted as target gene of miR-7641 by computerized analysis and the luciferase reporter assay. The miR-7641 significantly suppressed CXCL1 of transcriptional and post-translational levels. These data suggest that miR-7641 might be related with differentiation of human endothelial cells.


MicroRNA Human ES cells Endothelial differentiation CXCL1 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) and was funded by the Ministry of Education, Science, and Technology (2012007471).


  1. Ahn, S.E., S. Kim, K.H. Park, S.H. Moon, H.J. Lee, G.J. Kim, Y.J. Lee, K.Y. Cha, and H.M. Chung. 2006. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochemical and Biophysical Research Communications 340: 403–408.PubMedCrossRefGoogle Scholar
  2. Ambros, V. 2004. The functions of animal microRNAs. Nature 431: 350–355.PubMedCrossRefGoogle Scholar
  3. Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.PubMedCrossRefGoogle Scholar
  4. Bartel, D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.PubMedCrossRefGoogle Scholar
  5. Cai, X., C.H. Hagedorn, and B.R. Cullen. 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957–1966.PubMedCrossRefGoogle Scholar
  6. Chen, C.Z., L. Li, H.F. Lodish, and D.P. Bartel. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.PubMedCrossRefGoogle Scholar
  7. Cho, S.W., S.H. Moon, S.H. Lee, S.W. Kang, J. Kim, J.M. Lim, H.S. Kim, B.S. Kim, and H.M. Chung. 2007. Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation 116: 2409–2419.PubMedCrossRefGoogle Scholar
  8. Duffy, S.P., J. Shing, P. Saraon, L.C. Berger, M.V. Eiden, A. Wilde, and C.S. Tailor. 2010. The Fowler syndrome-associated protein FLVCR2 is an importer of heme. Molecular and Cellular Biology 30: 5318–5324.PubMedCrossRefGoogle Scholar
  9. Hneino, M., K. Blirando, V. Buard, G. Tarlet, M. Benderitter, P. Hoodless, A. Francois, and F. Milliat. 2012. The TG-interacting factor TGIF1 regulates stress-induced proinflammatory phenotype of endothelial cells. Journal of Biological Chemistry 287: 38913–38921.PubMedCrossRefGoogle Scholar
  10. Holderfield, M.T., and C.C. Hughes. 2008. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circulation Research 102: 637–652.PubMedCrossRefGoogle Scholar
  11. Houbaviy, H.B., M.F. Murray, and P.A. Sharp. 2003. Embryonic stem cell-specific MicroRNAs. Developmental Cell 5: 351–358.PubMedCrossRefGoogle Scholar
  12. Hristov, M., A. Zernecke, E.A. Liehn, and C. Weber. 2007. Regulation of endothelial progenitor cell homing after arterial injury. Thrombosis and Haemostasis 98: 274–277.PubMedGoogle Scholar
  13. Jakobsson, L., J. Kreuger, K. Holmborn, L. Lundin, I. Eriksson, L. Kjellen, and L. Claesson-Welsh. 2006. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Developmental Cell 10: 625–634.PubMedCrossRefGoogle Scholar
  14. Jones, C.E., and K. Chan. 2002. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 26: 748–753.PubMedGoogle Scholar
  15. Kane, N.M., L. Howard, B. Descamps, M. Meloni, J. Mcclure, R. Lu, A. Mccahill, C. Breen, R.M. Mackenzie, C. Delles, J.C. Mountford, G. Milligan, C. Emanueli, and A.H. Baker. 2012. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells 30: 643–654.PubMedCrossRefGoogle Scholar
  16. Kawamura, H., X. Li, K. Goishi, L.A. Van Meeteren, L. Jakobsson, S. Cebe-Suarez, A. Shimizu, D. Edholm, K. Ballmer-Hofer, L. Kjellen, M. Klagsbrun, and L. Claesson-Welsh. 2008. Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood 112: 3638–3649.PubMedCrossRefGoogle Scholar
  17. Krtolica, A., N. Larocque, O. Genbacev, D. Ilic, J.P. Coppe, C.K. Patil, T. Zdravkovic, M. Mcmaster, J. Campisi, and S.J. Fisher. 2011. GROalpha regulates human embryonic stem cell self-renewal or adoption of a neuronal fate. Differentiation 81: 222–232.PubMedCrossRefGoogle Scholar
  18. Lin, S.L., J.D. Miller, and S.Y. Ying. 2006. Intronic microRNA (miRNA). Journal of Biomedicine and Biotechnology 2006: 26818.PubMedCrossRefGoogle Scholar
  19. Numasaki, M., M. Watanabe, T. Suzuki, H. Takahashi, A. Nakamura, F. Mcallister, T. Hishinuma, J. Goto, M.T. Lotze, J.K. Kolls, and H. Sasaki. 2005. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. Journal of Immunology 175: 6177–6189.Google Scholar
  20. Pang, R.W., and R.T. Poon. 2006. Clinical implications of angiogenesis in cancers. Vascular health and risk management 2: 97–108.PubMedCrossRefGoogle Scholar
  21. Pao, S.S., I.T. Paulsen, and M.H. Saier Jr. 1998. Major facilitator superfamily. Microbiology and Molecular Biology Reviews 62: 1–34.PubMedGoogle Scholar
  22. Pera, M.F., B. Reubinoff, and A. Trounson. 2000. Human embryonic stem cells. Journal of Cell Science 113(Pt 1): 5–10.PubMedGoogle Scholar
  23. Saito, T., and P. Saetrom. 2010. MicroRNAs–targeting and target prediction. New Biotechnology 27: 243–249.PubMedCrossRefGoogle Scholar
  24. Sayed, D., and M. Abdellatif. 2011. MicroRNAs in development and disease. Physiological Reviews 91: 827–887.PubMedCrossRefGoogle Scholar
  25. Schraufstatter, I.U., J. Chung, and M. Burger. 2001. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. American Journal of Physiology Lung Cellular and Molecular Physiology 280: L1094–L1103.PubMedGoogle Scholar
  26. Shireman, P.K., and W.H. Pearce. 1996. Endothelial cell function: biologic and physiologic functions in health and disease. AJR American Journal of Roentgenology 166: 7–13.PubMedCrossRefGoogle Scholar
  27. Urbich, C., A. Kuehbacher, and S. Dimmeler. 2008. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research 79: 581–588.PubMedCrossRefGoogle Scholar
  28. Vittet, D., M.H. Prandini, R. Berthier, A. Schweitzer, H. Martin-Sisteron, G. Uzan, and E. Dejana. 1996. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88: 3424–3431.PubMedGoogle Scholar
  29. Wu, F., Z. Yang, and G. Li. 2009. Role of specific microRNAs for endothelial function and angiogenesis. Biochemical and Biophysical Research Communications 386: 549–553.PubMedCrossRefGoogle Scholar
  30. Yamanaka, Y., T. Kaneko, K. Yoshiba, R. Kaneko, N. Yoshiba, Y. Shigetani, J.E. Nor, and T. Okiji. 2012. Expression of angiogenic factors in rat periapical lesions. Journal of Endodontics 38: 313–317.PubMedCrossRefGoogle Scholar
  31. Yoo, J.K., J. Kim, S.J. Choi, C.H. Kim, D.R. Lee, H.M. Chung, and J.K. Kim. 2011. The hsa-miR-5739 modulates the endoglin network in endothelial cells derived from human embryonic stem cells. Biochemical and Biophysical Research Communications 415: 258–262.PubMedCrossRefGoogle Scholar
  32. Yoo, J.K., J. Kim, S.J. Choi, H.M. Noh, Y.D. Kwon, H. Yoo, H.S. Yi, H.M. Chung, and J.K. Kim. 2012. Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells. Stem cells and development 21: 2049–2057.PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2013

Authors and Affiliations

  1. 1.Department of Pharmacy, College of PharmacyCHA UniversitySeongnamRepublic of Korea
  2. 2.Dongguk University Research Institute of Biotechnology, Medical Science Research Center, Dongguk University School of MedicineGoyangRepublic of Korea
  3. 3.College of PharmacyCHA UniversityPocheonRepublic of Korea

Personalised recommendations