Advertisement

Archives of Pharmacal Research

, Volume 35, Issue 12, pp 2045–2061 | Cite as

Promising iron oxide-based magnetic nanoparticles in biomedical engineering

  • Phuong Ha-Lien Tran
  • Thao Truong-Dinh TranEmail author
  • Toi Van Vo
  • Beom-Jin Lee
Review

Abstract

For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

Key words

Magnetic nanoparticles Theranostic Surface functionalization Biomedical application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babes, L., Denizot, B., Amp, X., Tanguy, G., Le Jeune, J. J., and Jallet, P., Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study. J. Colloid Interface Sci., 212, 474–482 (1999).PubMedCrossRefGoogle Scholar
  2. Baker, A. S. J., Brown, A. S. C., Edwards, M. A., Hargreaves, J. S. J., Kiely, C. J., Meagher, A., and Pankhurst, Q. A., A structural study of haematite samples prepared from sulfated goethite precursors: the generation of axial mesoporous voids. J. Mater. Chem., 10, 761–766 (2000).CrossRefGoogle Scholar
  3. Bhattarai, S. R., Bahadur K.C, R., Aryal, S., Khil, M. S., and Kim, H. Y., N-Acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification. Carbohydr. Polym., 69, 467–477 (2007).CrossRefGoogle Scholar
  4. Bhattarai, S. R., Kc, R. B., Kim, S. Y., Sharma, M., Khil, M. S., Hwang, P. H., Chung, G. H., and Kim, H. Y., N-hexanoyl chitosan stabilized magnetic nanoparticles: Implication for cellular labeling and magnetic resonance imaging. J. Nanobiotechnology, 6, 1 (2008).PubMedCrossRefGoogle Scholar
  5. Binder, W. H. and Weinstabl, H. C., Surface-modified superparamagnetic iron-oxide nanoparticles. Chem. Mat. Sci., 138, 315–320 (2007).Google Scholar
  6. Butter, K., Kassapidou, K., Vroege, G. J., and Philipse, A. P., Preparation and properties of colloidal iron dispersions. J. Colloid Interface Sci., 287, 485–95 (2005).PubMedCrossRefGoogle Scholar
  7. Carmen Bautista, M., Bomati-Miguel, O., Del Puerto Morales, M., Serna, C. J., and Veintemillas-Verdaguer, S., Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. Magn. Magn. Mater., 293, 20–27 (2005).CrossRefGoogle Scholar
  8. Chastellain, M., Petri, A., and Hofmann, H., Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J. Colloid Interface Sci., 278, 353–360 (2004).PubMedCrossRefGoogle Scholar
  9. Chen, C., Jiang, X., Kaneti, Y. V., and Yu, A., Design and construction of polymerized-glucose coated Fe3O4 magnetic nanoparticles for delivery of aspirin. Powder Technol., DOI10.1016/j.powtec.2012.03.008 (2012).Google Scholar
  10. Chen, J., Wu, H., Han, D., and Xie, C., Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett., 231, 169–175 (2006).PubMedCrossRefGoogle Scholar
  11. Cherukuri, P., Glazer, E. S., and Curley, S. A., Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev., 62, 339–345 (2010).PubMedCrossRefGoogle Scholar
  12. Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., and Hubalek, J., Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 62, 144–149 (2010).PubMedCrossRefGoogle Scholar
  13. Colombo, M., Corsi, F., Foschi, D., Mazzantini, E., Mazzucchelli, S., Morasso, C., Occhipinti, E., Polito, L., Prosperi, D., Ronchi, S., and Verderio, P., HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacol. Res., 62, 150–165 (2010).PubMedCrossRefGoogle Scholar
  14. Cornell, R. M. and Schwertmann, U., The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses, VCH Verlagsgesellschaft Weinheim (1996).Google Scholar
  15. Corr, S. A., Byrne, S. J., Tekoriute, R., Meledandri, C. J., Brougham, D. F., Lynch, M., Kerskens, C., O’dwyer, L., and Gun’ko, Y. K., Linear assemblies of magnetic nanoparticles as MRI contrast agents. J. Am. Chem. Soc., 130, 4214–4215 (2008).PubMedCrossRefGoogle Scholar
  16. David, R., Groebner, M., and Franz, W.-M., Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells, 23, 477–482 (2005).PubMedCrossRefGoogle Scholar
  17. De Dios, A. S. and Diaz-Garcia, M. E., Multifunctional nanoparticles: analytical prospects. Anal. Chim. Acta, 666, 1–22 (2010).PubMedCrossRefGoogle Scholar
  18. De Hąn, C., Conception of the first magnetic resonance imaging contrast agents: a brief history. Top. Magn. Reson. Imaging, 12, 221–230 (2001).CrossRefGoogle Scholar
  19. De, M., Ghosh, P. S., and Rotello, V. M., Applications of nanoparticles in biology. Adv. Mater., 20, 4225–4241 (2008).CrossRefGoogle Scholar
  20. Dilnawaz, F., Singh, A., Mohanty, C., and Sahoo, S. K., Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials, 31, 3694–3706 (2010).PubMedCrossRefGoogle Scholar
  21. Domingo, C., RodríGuez-Clemente, R., and Blesa, M., Morphological properties of α-FeOOH, γ-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe(II) solutions. J. Colloid Interface Sci., 165, 244–252 (1994).CrossRefGoogle Scholar
  22. Frank, J. A., Zywicke, H., Jordan, E. K., Mitchell, J., Lewis, B. K., Miller, B., Bryant, L. H., Jr., and Bulte, J. W., Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad. Radiol., 9Suppl 2, S484–S487 (2002).PubMedCrossRefGoogle Scholar
  23. Gao, J., Gu, H., and Xu, B., Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res., 42, 1097–1107 (2009).PubMedCrossRefGoogle Scholar
  24. Ge, S., Shi, X., Sun, K., Li, C., Baker, J. R., Banaszak Holl, M. M., and Orr, B. G., A facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J. Phys. Chem. C Nanomater. Interfaces., 113, 13593–13599 (2009).PubMedGoogle Scholar
  25. Gupta, A. K. and Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021 (2005).PubMedCrossRefGoogle Scholar
  26. Gupta, A. K. and Wells, S., Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobioscience, 3, 66–73 (2004).PubMedCrossRefGoogle Scholar
  27. Gupta, R. and Chaudhury, N., Entrapment of biomolecules in solgel matrix for applications in biosensors: problems and future prospects. Biosens. Bioelectron., 22, 2387–2399 (2007).PubMedCrossRefGoogle Scholar
  28. Haddad, P. S., Martins, T. M., D’souza-Li, L., Li, L. M., Metze, K., Adam, R. L., Knobel, M., and Zanchet, D., Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications. Mater. Sci. Eng. C, 28, 489–494 (2008).CrossRefGoogle Scholar
  29. Hadjipanayis, C. G., Machaidze, R., Kaluzova, M., Wang, L., Schuette, A. J., Chen, H., Wu, X., and Mao, H., EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res., 70, 6303–6312 (2010).PubMedCrossRefGoogle Scholar
  30. Hamoudeh, M., Al Faraj, A., Canet-Soulas, E., Bessueille, F., Leonard, D., and Fessi, H., Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int. J. Pharm., 338, 248–257 (2007).PubMedCrossRefGoogle Scholar
  31. Herrera, A. P., Barrera, C., Zayas, Y., and Rinaldi, C., Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements. J. Colloid Interface Sci., 342, 540–549 (2010).PubMedCrossRefGoogle Scholar
  32. Hohnholt, M. C., Geppert, M., and Dringen, R., Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater., 7, 3946–3954 (2011).PubMedCrossRefGoogle Scholar
  33. Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chem. Commun. (Camb.), 927–934 (2003).Google Scholar
  34. Hyeon, T., Lee, S. S., Park, J., Chung, Y., and Na, H. B., Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc., 123, 12798–12801 (2001).PubMedCrossRefGoogle Scholar
  35. Ito, A., Shinkai, M., Honda, H., and Kobayashi, T., Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng., 100, 1–11 (2005).PubMedCrossRefGoogle Scholar
  36. Jain, T. K., Morales, M. A., Sahoo, S. K., Leslie-Pelecky, D. L., and Labhasetwar, V., Iron oxide oanoparticles for sustained delivery of anticancer agents. Mol. Pharm., 2, 194–205 (2005).PubMedCrossRefGoogle Scholar
  37. Jain, T. K., Richey, J., Strand, M., Leslie-Pelecky, D. L., Flask, C. A., and Labhasetwar, V., Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials, 29, 4012–4021 (2008).PubMedCrossRefGoogle Scholar
  38. Jarzyna, P. A., Skajaa, T., Gianella, A., Cormode, D. P., Samber, D. D., Dickson, S. D., Chen, W., Griffioen, A. W., Fayad, Z. A., and Mulder, W. J., Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials, 30, 6947–6954 (2009).PubMedCrossRefGoogle Scholar
  39. Johannsen, M., Gneveckow, U., Thiesen, B., Taymoorian, K., Cho, C. H., Waldöfner, N., Scholz, R., Jordan, A., Loening, S. A., and Wust, P., Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-Dimensional temperature distribution. Eur. Urol., 52, 1653–1662 (2007).PubMedCrossRefGoogle Scholar
  40. Jolivet, J. P., Belleville, P., Tronc, E., and Livage, J., Influence of Fe(II) on the formation of the spinel iron oxide in alkaline medium. Clays Clay Miner., 40, 531–539 (1992).CrossRefGoogle Scholar
  41. Ke, J. H., Lin, J. J., Carey, J. R., Chen, J. S., Chen, C. Y., and Wang, L. F., A specific tumor-targeting magnetofluorescent nanoprobe for dual-modality molecular imaging. Biomaterials, 31, 1707–1715 (2010).PubMedCrossRefGoogle Scholar
  42. Khan, A., Preparation and characterization of magnetic nanoparticles embedded in microgels. Mater. Lett., 62, 898–902 (2008).CrossRefGoogle Scholar
  43. Kim, D. H., Kim, K. N., Kim, K. M., and Lee, Y. K., Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J. Biomed. Mater. Res., A, 88, 1–11 (2009).Google Scholar
  44. Kim, E. H., Lee, H. S., Kwak, B. K., and Kim, B. K., Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater., 289, 328–330 (2005).CrossRefGoogle Scholar
  45. Kirsch, J. E., Basic principles of magnetic resonance contrast agents. Top. Magn. Reson. Imaging, 3, 1–18 (1991).PubMedCrossRefGoogle Scholar
  46. Kumagai, M., Imai, Y., Nakamura, T., Yamasaki, Y., Sekino, M., Ueno, S., Hanaoka, K., Kikuchi, K., Nagano, T., Kaneko, E., Shimokado, K., and Kataoka, K., Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloids Surf. B Biointerfaces, 56, 174–181 (2007).PubMedCrossRefGoogle Scholar
  47. Kumagai, M., Kano, M. R., Morishita, Y., Ota, M., Imai, Y., Nishiyama, N., Sekino, M., Ueno, S., Miyazono, K., and Kataoka, K., Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymercoated magnetite nanoparticles with TGF-beta inhibitor. J. Control. Release, 140, 306–311 (2009).PubMedCrossRefGoogle Scholar
  48. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R. N., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochem ical characterizations, and biological applications. Chem. Rev., 108, 2064–2110 (2008).PubMedCrossRefGoogle Scholar
  49. Lee, J., Isobe, T., and Senna, M., Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci., 177, 490–494 (1996).CrossRefGoogle Scholar
  50. Li, F., Sun, J., Zhu, H., Wen, X., Lin, C., and Shi, D., Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf. B Biointerfaces, 88, 58–62 (2011).PubMedCrossRefGoogle Scholar
  51. Liao, M. -H. and Chen, D.-H., Preparation and characterization of a novel magnetic nano-adsorbent. J. Mater. Chem., 12, 3654–3659 (2002).CrossRefGoogle Scholar
  52. Liu, C., Wu, X., Klemmer, T., Shukla, N., Weller, D., Reduction of sintering during annealing of FePt nanoparticles coated with iron oxide. Chem. Mater., 17, 620–625 (2005).CrossRefGoogle Scholar
  53. Lu, A. H., Salabas, E. L., and Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 46, 1222–1244 (2007).PubMedCrossRefGoogle Scholar
  54. Lu, Y., Yin, Y., Mayers, B. T., and Xia, Y., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through A solgel approach. Nano Lett., 2, 183–186 (2002).CrossRefGoogle Scholar
  55. Lübbe, A. S., Bergemann, C., Huhnt, W., Fricke, T., Riess, H., Brock, J. W., and Huhn, D., Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Res., 56, 4694–4701 (1996).PubMedGoogle Scholar
  56. Maeng, J. H., Lee, D. H., Jung, K. H., Bae, Y. H., Park, I. S., Jeong, S., Jeon, Y. S., Shim, C. K., Kim, W., Kim, J., Lee, J., Lee, Y. M., Kim, J. H., Kim, W. H., and Hong, S. S., Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials, 31, 4995–5006 (2010).PubMedCrossRefGoogle Scholar
  57. Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., and Jordan, A., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol., 103, 317–324 (2011).PubMedCrossRefGoogle Scholar
  58. Maury, P. A., Reinhoudt, D. N., and Huskens, J., Assembly of nanoparticles on patterned surfaces by noncovalent interaction. Curr. Opin. Colloid Interface Sci., 13, 74–80 (2007).CrossRefGoogle Scholar
  59. Melo, T. F. O., Da Silva, S. W., Soler, M. a. G., Lima, E. C. D., and Morais, P. C., Investigation of surface passivation process on magnetic nanoparticles by Raman spectroscopy. Surf. Sci., 600, 3642–3645 (2006).CrossRefGoogle Scholar
  60. Meng, J., Fan, J., Galiana, G., Branca, R. T., Clasen, P. L., Ma, S., Zhou, J., Leuschner, C., Kumar, C. S. S. R., Hormes, J., Otiti, T., Beye, A. C., Harmer, M. P., Kiely, C. J., Warren, W., Haataja, M. P., and Soboyejo, W. O., LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mater. Sci. Eng. C, 29, 1467–1479 (2009).CrossRefGoogle Scholar
  61. Mikhaylova, M., Kim, D. K., Bobrysheva, N., Osmolowsky, M., Semenov, V., Tsakalakos, T., and Muhammed, M., Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir, 20, 2472–2477 (2004).PubMedCrossRefGoogle Scholar
  62. Minges Wols, H. A., and Witte, P. L., Plasma cell purification from murine bone marrow using a two-step isolation approach. J. Immunol. Methods, 329, 219–224 (2008).PubMedCrossRefGoogle Scholar
  63. Mohapatra, M. and Anand, S., Synthesis and applications of nano-structured iron oxides/hydroxides — a review. Int. J. Eng. Sci. Technol., 2, 127–146 (2010).Google Scholar
  64. Morais, P. C., Santos, R. L., Pimenta, A. C. M., Azevedo, R. B., and Lima, E. C. D., Preparation and characterization of ultra-stable biocompatible magnetic fluids using citratecoated cobalt ferrite nanoparticles. Thin Solid Films, 515, 266–270 (2006).CrossRefGoogle Scholar
  65. Mornet, S., Portier, J., and Duguet, E., A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater., 293, 127–134 (2005).CrossRefGoogle Scholar
  66. Munnier, E., Cohen-Jonathan, S., Linassier, C., Douziech-Eyrolles, L., Marchais, H., Souce, M., Herve, K., Dubois, P., and Chourpa, I., Novel method of doxorubicin-SPION reversible association for magnetic drug targeting. Int. J. Pharm., 363, 170–176 (2008).PubMedCrossRefGoogle Scholar
  67. Omer, M., Haider, S., and Park, S.-Y., A novel route for the preparation of thermally sensitive core-shell magnetic nanoparticles. Polymer, 52, 91–97 (2011).CrossRefGoogle Scholar
  68. Pantic, I., Magnetic nanoparticles in cancer diagnosis and treatment: novel approaches. Rev. Adv. Mater. Sci., 26, 67–73 (2010).Google Scholar
  69. Park, J., An, K., Hwang, Y., Park, J. G., Noh, H. J., Kim, J. Y., Park, J. H., Hwang, N. M., and Hyeon, T., Ultra-largescale syntheses of monodisperse nanocrystals. Nat. Mater., 3, 891–895 (2004).PubMedCrossRefGoogle Scholar
  70. Parveen, S., Misra, R., and Sahoo, S. K., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 8, 147–166 (2012).PubMedGoogle Scholar
  71. Pascal, C., Pascal, J. L., Favier, F., Elidrissi Moubtassim, M. L., and Payen, C., Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem. Mater., 11, 141–147 (1998).CrossRefGoogle Scholar
  72. Paul, B. K. and Moulik, S. P., Uses and applications of microemulsions. Curr. Sci., 80, 990–1001 (2001).Google Scholar
  73. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., and Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nano, 2, 751–760 (2007).CrossRefGoogle Scholar
  74. Piao, Y., Kim, J., Na, H. B., Kim, D., Baek, J. S., Ko, M. K., Lee, J. H., Shokouhimehr, M., and Hyeon, T., Wrap-bakepeel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat. Mater., 7, 242–247 (2008).PubMedCrossRefGoogle Scholar
  75. Prabha, S., Zhou, W. Z., Panyam, J., and Labhasetwar, V., Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm., 244, 105–115 (2002).PubMedCrossRefGoogle Scholar
  76. Qiao, T., Wu, Y., Jin, J., Gao, W., Xie, Q., Wang, S., Zhang, Y., and Deng, H., Conjugation of catecholamines on magnetic nanoparticles coated with sulfonated chitosan. Colloids Surf. A Physicochem. Eng. Asp., 380, 169–174 (2011).CrossRefGoogle Scholar
  77. Rahimi, M., Wadajkar, A., Subramanian, K., Yousef, M., Cui, W., Hsieh, J. T., and Nguyen, K. T., In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine, 6, 672–680 (2010).PubMedGoogle Scholar
  78. Rühle, M. and Ernst, F., High-resolution imaging and spectrometry of materials, Springer (2003).Google Scholar
  79. Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., and Tan, W., Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir, 17, 2900–2906 (2001).CrossRefGoogle Scholar
  80. Sanvicens, N. and Marco, M. P., Multifunctional nanoparticles — properties and prospects for their use in human medicine. Trends Biotechnol., 26, 425–433 (2008).PubMedCrossRefGoogle Scholar
  81. Schweiger, C., Pietzonka, C., Heverhagen, J., and Kissel, T., Novel magnetic iron oxide nanoparticles coated with poly (ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int. J. Pharm., 408, 130–137 (2011).PubMedCrossRefGoogle Scholar
  82. Small, A. C. and Johnston, J. H., Novel hybrid materials of magnetic nanoparticles and cellulose fibers. J. Colloid Interface Sci., 331, 122–126 (2009).PubMedCrossRefGoogle Scholar
  83. Stöber, W., Fink, A., and Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 26, 62–69 (1968).CrossRefGoogle Scholar
  84. Sugimoto, T. and Sakata, K., Preparation of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel. J. Colloid Interface Sci., 152, 587–590 (1992).CrossRefGoogle Scholar
  85. Sun, C., Lee, J. S., and Zhang, M., Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv. Rev, 60, 1252–1265 (2008).PubMedCrossRefGoogle Scholar
  86. Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287, 1989–1992 (2000).PubMedCrossRefGoogle Scholar
  87. Sun, S. and Zeng, H., Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc., 124, 8204–8205 (2002).PubMedCrossRefGoogle Scholar
  88. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 126, 273–279 (2003).CrossRefGoogle Scholar
  89. Tartaj, P., Morales, M. P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., and Serna, C. J., Synthesis, properties and biomedical applications of magnetic nanoparticles, Amsterdam, The Netherlands, Elsevier (2006).Google Scholar
  90. Thoeny, H. C., Triantafyllou, M., Birkhaeuser, F. D., Froehlich, J. M., Tshering, D. W., Binser, T., Fleischmann, A., Vermathen, P., and Studer, U. E., Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur. Urol., 55, 761–769 (2009).PubMedCrossRefGoogle Scholar
  91. Vogt, C., Toprak, M., Muhammed, M., Laurent, S., Bridot, J.-L., and Müller, R., High quality and tuneable silica shell-magnetic core nanoparticles. J. Nano. Res., 12, 1137–1147 (2010).CrossRefGoogle Scholar
  92. Vonarbourg, A., Passirani, C., Saulnier, P., and Benoit, J. P., Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 27, 4356–4373 (2006).PubMedCrossRefGoogle Scholar
  93. Wang, J., Sun, J., Sun, Q., and Chen, Q., One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull., 38, 1113–1118 (2003).CrossRefGoogle Scholar
  94. Wang, S., Jarrett, B. R., Kauzlarich, S. M., and Louie, A. Y., Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J. Am. Chem. Soc., 129, 3848–3856 (2007).PubMedCrossRefGoogle Scholar
  95. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., and Josephson, L., Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol., 23, 1418–1423 (2005).PubMedCrossRefGoogle Scholar
  96. Willard, M. A., Kurihara, L. K. C., E. E., Calvin, S., and Harris, V. G., Encyclopedia of Nanoscience and Nanotechnology, CA, Valencia (2004).Google Scholar
  97. Willis, A. L., Turro, N. J., and O’brien, S., Spectroscopic characterization of the surface of iron oxide nanocrystals, Washington, DC, ETATS-UNIS, American Chemical Society (2005).Google Scholar
  98. Xu, Z. Z., Wang, C. C., Yang, W. L., Deng, Y. H., and Fu, S. K., Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. J. Magn. Magn. Mater., 277, 136–143 (2004).CrossRefGoogle Scholar
  99. Yan, X., Scherphof, G. L., and Kamps, J. A., Liposome opsonization. J. Liposome Res., 15, 109–139 (2005).PubMedGoogle Scholar
  100. Yokoyama, T., Tam, J., Kuroda, S., Scott, A. W., Aaron, J., Larson, T., Shanker, M., Correa, A. M., Kondo, S., Roth, J. A., Sokolov, K., and Ramesh, R., EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS One, 6, e25507 (2011).PubMedCrossRefGoogle Scholar
  101. Yuan, C. and Kerwin, W. S., MRI of atherosclerosis. J. Magn. Reson. Imaging, 19, 710–719 (2004).PubMedCrossRefGoogle Scholar
  102. Yuan, W., Yuan, J., Zhou, L., Wu, S., and Hong, X., Fe3O4 @poly(2-hydroxyethyl methacrylate)-graft-poly(ɛ-caprolactone) magnetic nanoparticles with branched brush polymeric shell. Polymer, 51, 2540–2547 (2010).CrossRefGoogle Scholar
  103. Zhang, L. -Y., Zhu, X.-J., Sun, H.-W., Chi, G.-R., Xu, J.-X., and Sun, Y.-L. Control synthesis of magnetic Fe3O4-chitosan nanoparticles under UV irradiation in aqueous system. Curr. Appl. Phys., 10, 828–833 (2010).CrossRefGoogle Scholar
  104. Zhang, Y., Wang, H., Yan, B., Zhang, Y., Li, J., Shen, G., and Yu, R., A reusable piezoelectric immunosensor using antibody-adsorbed magnetic nanocomposite. J. Immunol. Methods, 332, 103–111 (2008).PubMedCrossRefGoogle Scholar
  105. Zhao, Y., Qiu, Z., Huang, J., Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers. Chinese J. Chem. Eng., 16, 451–455 (2008).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Phuong Ha-Lien Tran
    • 1
  • Thao Truong-Dinh Tran
    • 1
    Email author
  • Toi Van Vo
    • 1
  • Beom-Jin Lee
    • 2
  1. 1.Department of Biomedical EngineeringInternational University — Vietnam National UniversityHo Chi Minh CityVietnam
  2. 2.College of PharmacyAjou UniversitySuwonKorea

Personalised recommendations