Skip to main content
Log in

Blockade of human HERG K+ channels by rosiglitazone, an antidiabetic drug

  • Research Article
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

This study examined the effect of rosiglitazone, an oral antidiabetic drug, on human ether-a-gogo-related gene (HERG) channels expressed in human embryonic kidney (HEK293) cells. Using the whole-cell patch-clamp technique, interaction between rosiglitazone and HERG in HEK293 cells was studied. Rosiglitazone inhibited HERG channels in a concentration-dependent manner, with an IC 50 value of 18.8 μM and a Hill coefficient of 1.0. These effects were reversible after wash-out of the drug. The rosiglitazone-induced inhibition of HERG channels was voltagedependent, with a steep increase in inhibition over the voltage range of channel opening. However, inhibition was voltage-independent over the voltage range in which channels are fully activated. Rosiglitazone did not change the steady-state activation or inactivation curves or the activation or deactivation kinetics, implying that rosiglitazone blocks HERG channels predominantly in the open and inactivated state rather than in the closed state. The present study suggests that rosiglitazone blocks HERG channels by binding to activated and inactivated channels, and rosiglitazone use should thus be carefully monitored in patients with pre-existing QT prolongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahn, H. S., Kim, S. E., Jang, H. J., Kim, M. J., Rhie, D. J., Yoon, S. H., Jo, Y. H., Kim, M. S., Sung, K. W., Kim, S. Y., and Hahn, S. J., Open channel block of Kv1.3 by rosiglitazone and troglitazone: Kv1.3 as the pharmacological target for rosiglitazone. Naunyn Schmiedebergs Arch. Pharmacol., 374, 305–309 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Chapelsky, M. C., Thompson-Culkin, K., Miller, A. K., Sack, M., Blum, R., and Freed, M. I., Pharmacokinetics of rosiglitazone in patients with varying degrees of renal insufficiency. J. Clin. Pharmacol., 43, 252–259 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., and Keating, M. T., A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 80, 795–803 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Deeks, E. D. and Keam, S. J., Rosiglitazone: a review of its use in type 2 diabetes mellitus. Drugs, 67, 2747–2779 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch., 391, 85–100 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Hruska, M. W. and Frye, R. F., Simplified method for determination of rosiglitazone in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 803, 317–320 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Jeong, I., Choi, B., and Hahn, S., Rosiglitazone inhibits Kv 4.3 potassium channels by open-channel block and acceleration of closed-state inactivation. Br. J. Pharmacol., 163, 510–520 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Jo, S. H., Hong, H. K., Chong, S. H., Won, K. H., Jung, S. J., and Choe, H., Clomipramine block of the hERG K+ channel: accessibility to F656 and Y652. Eur. J. Pharmacol., 592, 19–25 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Knock, G. A., Mishra, S. K., and Aaronson, P. I., Differential effects of insulin-sensitizers troglitazone and rosiglitazone on ion currents in rat vascular myocytes. Eur. J. Pharmacol., 368, 103–109 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kolte, B. L., Raut, B. B., Deo, A. A., Bagool, M. A., and Shinde, D. B., Liquid chromatographic method for the determination of rosiglitazone in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 788, 37–44 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. Y., Kim, Y. J., Kim, K. T., Choe, H., and Jo, S. H., Blockade of HERG human K+ channels and IKr of guineapig cardiomyocytes by the antipsychotic drug clozapine. Br. J. Pharmacol., 148, 499–509 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M., and Kliewer, S. A., An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem., 270, 12953–12956 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Lu, L., Reiter, M. J., Xu, Y., Chicco, A., Greyson, C. R., and Schwartz, G. G., Thiazolidinedione drugs block cardiac KATP channels and may increase propensity for ischaemic ventricular fibrillation in pigs. Diabetologia, 51, 675–685 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Mishra, S. K. and Aaronson, P. I., Differential block by troglitazone and rosiglitazone of glibenclamide-sensitive K+ current in rat aorta myocytes. Eur. J. Pharmacol., 386, 121–125 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Nissen, S. E. and Wolski, K., Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med., 356, 2457–2471 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C. and Jurkiewicz, N. K., Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J. Gen. Physiol., 96, 195–215 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Suessbrich, H., Schonherr, R., Heinemann, S. H., Attali, B., Lang, F., and Busch, A. E., The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes. Br. J. Pharmacol., 120, 968–974 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Suessbrich, H., Waldegger, S., Lang, F., and Busch, A. E., Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Lett., 385, 77–80 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela, M., Castaldo, P., Pannaccione, A., Giorgio, G., and Annunziato, L., Human ether-a-gogo related gene (HERG) K+ channels as pharmacological targets: present and future implications. Biochem. Pharmacol., 55, 1741–1746 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Trudeau, M. C., Warmke, J. W., Ganetzky, B., and Robertson, G. A., HERG, a human inward rectifier in the voltage-gated potassium channel family. Science, 269, 92–95 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Viskin, S., Long QT syndromes and torsade de pointes. Lancet, 354, 1625–1633 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff, A. J. and Goa, K. L., Rosiglitazone: a review of its use in the management of type 2 diabetes mellitus. Drugs, 62, 1805–1837 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z., Gong, Q., Ye, B., Fan, Z., Makielski, J. C., Robertson, G. A., and January, C. T., Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys. J., 74, 230–241 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bok Hee Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Sung, M.J., Hahn, S.J. et al. Blockade of human HERG K+ channels by rosiglitazone, an antidiabetic drug. Arch. Pharm. Res. 35, 1655–1664 (2012). https://doi.org/10.1007/s12272-012-0917-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0917-x

Key words