Advertisement

Archives of Pharmacal Research

, Volume 35, Issue 8, pp 1421–1430 | Cite as

Anti-inflammatory effect of sargachromanol G isolated from Sargassum siliquastrum in RAW 264.7 cells

  • Weon-Jong Yoon
  • Soo-Jin Heo
  • Sang-Chul Han
  • Hye-Ja Lee
  • Gyeoung-Jin Kang
  • Hee-Kyoung Kang
  • Jin-Won Hyun
  • Young-Sang Koh
  • Eun-Sook YooEmail author
Article

Abstract

A study on the anti-inflammatory activity of brown alga Sargassum siliquastrum led to the isolation of sargachromanol G (SG). In this study, the anti-inflammatory effect and the action mechanism of SG have been investigated in murine macrophage cell line RAW 264.7. SG dosedependently inhibited the production of inflammatory markers [nitric oxide (NO), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2)] and pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6] induced by LPS treatment. To further elucidate the mechanism of this inhibitory effect of SG, we studied LPS-induced nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinases (MAPKs) phosphorylation. SG inhibited the phosphorylation IκB-α and NF-κB (p65 and p50) and MAPK (ERK1/2, JNK, and p38) in a dose dependent manner. These results suggest that the anti-inflammatory activity of SG results from its modulation of pro-inflammatory cytokines and mediators via the suppression of NF-κB activation and MAPK phosphorylation.

Key words

Sargachromanol G Sargassum siliquastrum Inflammatory markers Pro-inflammatory cytokines NF-κB MAPK 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, N., Chen, L. C., Gordon, M. A., Laskin, J. D., and Laskin, D. L., Regulation of cyclooxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia. J. Leukoc. Biol., 71, 1005–1011 (2002).PubMedGoogle Scholar
  2. Brown, M. D. and Sacks, D. B., Compartmentalised MAPK pathways. Handb. Exp. Pharmacol., 186, 205–235 (2008).PubMedCrossRefGoogle Scholar
  3. Ding, C., Cicuttini, F., Li, J., and Jones, G., Targeting IL-6 in the treatment of inflammatory and autoimmune diseases. Expert Opin. Investig. Drugs, 18, 1457–1466 (2009).PubMedCrossRefGoogle Scholar
  4. Edwards, M. R., Bartlett, N. W., Clarke, D., Birrell, M., Belvisi, M., and Johnston, S. L., Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol. Ther., 121, 1–13 (2009).PubMedCrossRefGoogle Scholar
  5. Feldmann, M., Brennan, F. M., Chantry, D., Haworth, C., Turner, M., Katsikis, P., Londei, M., Abney, E., Buchan, G., Barrett, K., Corcoran, A., Kissonerghis, M., Zheng, R., Grubeck-Loebenstein, B., Barkley, D., Chu, C. Q., Field, M., and Maini, R. N., Cytokine assays: role in evaluation of the pathogenesis of autoimmunity. Immunol. Rev., 119, 105–123 (1991).PubMedCrossRefGoogle Scholar
  6. Feldmann, M., Many cytokines are very useful therapeutic targets in disease. J. Clin. Invest., 118, 3533–3536 (2008).PubMedCrossRefGoogle Scholar
  7. Fernandez, M., Rios, J. C., Jos, A., and Repetto, G., Comparative cytotoxicity of alachlor on RTG-2 trout and SH-SY5Y human cells. Arch. Environ. Contam. Toxicol., 51, 515–520 (2006).PubMedCrossRefGoogle Scholar
  8. Fogal, B. and Hewett, S. J., Interleukin-1beta: a bridge between inflammation and excitotoxicity? J. Neurochem., 106, 1–23 (2008).PubMedCrossRefGoogle Scholar
  9. Fujihara, M., Muroi, M., Tanamoto, K., Suzuki, T., Azuma, H., and Ikeda, H., Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther., 100, 171–194 (2003).PubMedCrossRefGoogle Scholar
  10. Ghosh, S. and Hayden, M. S., New regulators of NF-kappaB in inflammation. Nat. Rev. Immunol., 8, 837–848 (2008).PubMedCrossRefGoogle Scholar
  11. Guha, M. and Mackman, N., LPS induction of gene expression in human monocytes. Cell Signal., 13, 85–94 (2001).PubMedCrossRefGoogle Scholar
  12. Heo, S. J., Yoon, W. J., Kim, K. N., Ahn, G. N., Kang, S. M., Kang, D. H., Affan, A., Oh, C., Jung, W. K., and Jeon, Y. J., Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol., 48, 2045–2051 (2010).PubMedCrossRefGoogle Scholar
  13. Ji, R. R., Gereau, R. W., 4th., Malcangio, M., and Strichartz, G. R., MAP kinase and pain. Brain Res. Rev., 60, 135–148 (2009).PubMedCrossRefGoogle Scholar
  14. Kim, E. Y. and Moudgil, K. D., Regulation of autoimmune inflammation by pro-inflammatory cytokines. Immunol. Lett., 120, 1–5 (2008).PubMedCrossRefGoogle Scholar
  15. Kim, J. H., Bachmann, R. A., and Chen, J., Interleukin-6 and insulin resistance. Vitam. Horm., 80, 613–633 (2009).PubMedCrossRefGoogle Scholar
  16. Kofler, S., Nickel, T., and Weis, M., Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin. Sci., 108, 205–213 (2005).PubMedCrossRefGoogle Scholar
  17. Lapa e Silva, J. R., Possebon da Silva, M. D., Lefort, J., and Vargaftig, B. B., Endotoxin, asthma, and allergic immune responses. Toxicology, 152, 31–35 (2000).PubMedCrossRefGoogle Scholar
  18. Lee, H. J., Hyun, E. A., Yoon, W. J., Kim, B. H., Rhee, M. H., Kang, H. K., Cho, J. Y, and Yoo, E. S., In vitro antiinflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J. Ethnopharmacol., 103, 208–216 (2006).PubMedCrossRefGoogle Scholar
  19. Malemud, C. J. and Miller, A, H., Pro-inflammatory cytokineinduced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs. Expert Opin. Ther. Targets, 12, 171–183 (2008).PubMedCrossRefGoogle Scholar
  20. Mehra, V. C., Ramgolam, V. S., and Bender, J. R., Cytokines and cardiovascular disease. J. Leukoc. Biol., 78, 805–818 (2005).PubMedCrossRefGoogle Scholar
  21. Murakami, A. and Ohigashi, H., Targeting NOX, iNOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer, 121, 2357–2363 (2007).PubMedCrossRefGoogle Scholar
  22. Ren, K. and Torres, R., Role of interleukin-1beta during pain and inflammation. Brain Res. Rev., 60, 57–64 (2009).PubMedCrossRefGoogle Scholar
  23. Sugita, T., Targeting therapy for inflammatory diseases by anti-TNF-alpha biologics. Yakugaku Zasshi, 129, 19–24 (2009).PubMedCrossRefGoogle Scholar
  24. Sweet, M. J. and Hume, D. A., Endotoxin signal transduction in macrophages. J. Leukoc. Biol., 60, 8–26 (1996).PubMedGoogle Scholar
  25. Walsh, N. C., Crotti, T. N., Goldring, S. R., and Gravallese, E. M., Rheumatic diseases: the effects of inflammation on bone. Immunol. Rev., 208, 228–251 (2005).PubMedCrossRefGoogle Scholar
  26. Wong, E. T. and Tergaonkar, V., Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clin. Sci., 116, 451–465 (2009).PubMedCrossRefGoogle Scholar
  27. Yoon, W. J., Moon, J. Y., Song, G., Lee, Y. K., Han, M. S., Lee, J. S., Ihm, B. S., Lee, W. J., Lee, N. H., and Hyun, C. G., Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Food Chem. Toxicol., 48, 1222–1229 (2010).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Weon-Jong Yoon
    • 1
    • 3
  • Soo-Jin Heo
    • 2
  • Sang-Chul Han
    • 1
  • Hye-Ja Lee
    • 1
  • Gyeoung-Jin Kang
    • 1
  • Hee-Kyoung Kang
    • 1
  • Jin-Won Hyun
    • 1
  • Young-Sang Koh
    • 1
  • Eun-Sook Yoo
    • 1
    • 4
    Email author
  1. 1.School of Medicine, Institute of Medical ScienceJeju National UniversityJejuKorea
  2. 2.Global Bioresources Research CenterKorea Institute of Ocean Science & TechnologyAnsanKorea
  3. 3.Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP)JejuKorea
  4. 4.School of MedicineJeju National UniversityJejuKorea

Personalised recommendations