Protective effect of fucoidan against acetaminophen-induced liver injury

Abstract

Fucoidan, a sulfated polysaccharide extracted from various brown seaweeds, possesses a wide range of pharmacological properties. In this study, we investigated the protective effect of fucoidan on acetaminophen-induced acute liver injury in rats. Liver injury was induced by administration of acetaminophen (800 mg/kg, i.p.) and fucoidan was administered (100 mg kg, p.o.) 2 h before and after acetaminophen administration. After 24 h, co-treatment of fucoidan ameliorated liver damage and cell death induced by acetaminophen. Acetaminophen induced the overexpression of CYP2E1, one of the metabolizing enzymes of acetaminophen, but cotreatment with fucoidan suppressed its increased expression of CYP2E1. Fucoidan also reduced the hepatic apoptosis induced by acetaminophen exposure as shown in the protein expression of Bax, Bcl-2, and cleaved caspase-3. The anti-oxidative effect of fucoidan was observed from the increase of the production and expression of glutathione, superoxide dismutase, and glutathione peroxidase, both of which were decreased by acetaminophen. Also, fucoidan decreased the expression of inflammatory mediators, including tumor necrosis factoralpha, interleukin 1 beta, and inducible nitric oxide synthase. Taken together, the data demonstrate the hepato-protective effects of fucoidan against acetaminophen-induced liver injury via anti-oxidant, anti-inflammatory, and anti-apoptotic mechanisms.

This is a preview of subscription content, access via your institution.

References

  1. Angstwurm, K., Weber, J. R., Segert, A., Burger, W., Weih, M., Freyer, D., Einhaupl, K. M., and Dirnagl, U., Fucoidin, a polysaccharide inhibiting leukocyte rolling, attenuates inflammatory responses in experimental pneumococcal meningitis in rats. Neurosci. Lett., 191, 1–4 (1995)

    PubMed  Article  CAS  Google Scholar 

  2. Bajt, M. L., Farhood, A., Lemasters, J. J., and Jaeschke, H., Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J. Pharmacol. Exp. Ther., 324, 8–14 (2008)

    PubMed  Article  CAS  Google Scholar 

  3. Bilan, M. I., Grachev, A. A., Shashkov, A. S., Nifantiev, N. E., and Usov, A. I., Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr. Res., 341, 238–245 (2006).

    PubMed  Article  CAS  Google Scholar 

  4. Boyer, T. D. and Rouff, S. L., Acetaminophen-induced hepatic necrosis and renal failure. JAMA, 218, 440–441 (1971).

    PubMed  Article  CAS  Google Scholar 

  5. Dahlin, D. C., Miwa, G. T., Lu, A. Y., and Nelson, S. D., N-acetylp-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. U. S. A., 81, 1327–1331 (1984).

    PubMed  Article  CAS  Google Scholar 

  6. El-Hassan, H., Anwar, K., Macanas-Pirard, P., Crabtree, M., Chow, S. C., Johnson, V. L., Lee, P. C., Hinton, R. H., Price, S. C., and Kass, G. E., Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid, and caspases. Toxicol. Appl. Pharmacol., 191, 118–129 (2003).

    PubMed  Article  CAS  Google Scholar 

  7. Ferret, P. J., Hammoud, R., Tulliez, M., Tran, A., Trebeden, H., Jaffray, P., Malassagne, B., Calmus, Y., Weill, B., and Batteux, F., Detoxification of reactive oxygen species by a nonpeptidyl mimic of superoxide dismutase cures acetaminophen-induced acute liver failure in the mouse. Hepatology, 33, 1173–1180 (2001).

    PubMed  Article  CAS  Google Scholar 

  8. Hayashi, S., Itoh, A., Isoda, K., Kondoh, M., Kawase, M., and Yagi, K., Fucoidan partly prevents CCl4-induced liver fibrosis. Eur. J. Pharmacol., 580, 380–384 (2008).

    PubMed  Article  CAS  Google Scholar 

  9. Hierholzer, C., Harbrecht, B., Menezes, J. M., Kane, J., MacMicking, J., Nathan, C. F., Peitzman, A. B., Billiar, T. R., and Tweardy, D. J., Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J. Exp. Med., 187, 917–928 (1998).

    PubMed  Article  CAS  Google Scholar 

  10. Hong, S. W., Jung, K. H., Lee, H. S., Zheng, H. M., Choi, M. J., Lee, C., and Hong, S. S., Suppression by fucoidan of liver fibrogenesis via the TGF-beta/Smad pathway in protecting against oxidative stress. Biosci. Biotechnol. Biochem., 75, 833–840 (2011).

    PubMed  Article  CAS  Google Scholar 

  11. Hu, T., Liu, D., Chen, Y., Wu, J., and Wang, S., Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int. J. Biol. Macromol., 46, 193–198 (2010).

    PubMed  Article  CAS  Google Scholar 

  12. Jaeschke, H., Reactive oxygen and mechanisms of inflammatory liver injury. J. Gastroenterol. Hepatol., 15, 718–724 (2000).

    PubMed  Article  CAS  Google Scholar 

  13. Jaeschke, H. and Lemasters, J. J., Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology, 125, 1246–1257 (2003).

    PubMed  Article  CAS  Google Scholar 

  14. Jollow, D. J., Thorgeirsson, S. S., Potter, W. Z., Hashimoto, M., and Mitchell, J. R., Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology, 12, 251–271 (1974).

    PubMed  Article  CAS  Google Scholar 

  15. Kang, K. S., Kim, I. D., Kwon, R. H., Lee, J. Y., Kang, J. S., and Ha, B. J., The effects of fucoidan extracts on CCl(4)-induced liver injury. Arch. Pharm. Res., 31, 622–627 (2008).

    PubMed  Article  CAS  Google Scholar 

  16. Li, B., Lu, F., Wei, X., and Zhao, R., Fucoidan: structure and bioactivity. Molecules, 13, 1671–1695 (2008).

    PubMed  Article  CAS  Google Scholar 

  17. Maruyama, H., Tamauchi, H., Hashimoto, M., and Nakano, T., Antitumor activity and immune response of Mekabu fucoidan extracted from Sporophyll of Undaria pinnatifida. In Vivo, 17, 245–249 (2003).

    PubMed  CAS  Google Scholar 

  18. Masubuchi, Y., Suda, C., and Horie, T., Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J. Hepatol., 42, 110–116 (2005).

    PubMed  Article  CAS  Google Scholar 

  19. Mitchell, J. R., Jollow, D. J., Potter, W. Z., Gillette, J. R., and Brodie, B. B., Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther., 187, 211–217 (1973).

    PubMed  CAS  Google Scholar 

  20. Nakazato, K., Takada, H., Iha, M., and Nagamine, T., Attenuation of N-nitrosodiethylamine-induced liver fibrosis by high-molecular-weight fucoidan derived from Cladosiphon okamuranus. J. Gastroenterol. Hepatol., 25, 1692–1701 (2010).

    PubMed  Article  CAS  Google Scholar 

  21. Nelson, S. D., Mechanisms of the formation and disposition of reactive metabolites that can cause acute liver injury. Drug Metab. Rev., 27, 147–177 (1995).

    PubMed  Article  CAS  Google Scholar 

  22. Niehaus, W. G., Jr. and Samuelsson, B., Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur. J. Biochem., 6, 126–130 (1968).

    PubMed  Article  CAS  Google Scholar 

  23. Nishino, T., Nishioka, C., Ura, H., and Nagumo, T., Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res., 255, 213–224 (1994).

    PubMed  Article  CAS  Google Scholar 

  24. Novo, E. and Parola, M., Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair, 1, 5 (2008).

    PubMed  Article  Google Scholar 

  25. Potter, W. Z., Davis, D. C., Mitchell, J. R., Jollow, D. J., Gillette, J. R., and Brodie, B. B., Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J. Pharmacol. Exp. Ther., 187, 203–210 (1973).

    PubMed  CAS  Google Scholar 

  26. Prescott, L. F., Kinetics and metabolism of paracetamol and phenacetin. Br. J. Clin. Pharmacol., 10 Suppl 2, 291S–298S (1980).

    Google Scholar 

  27. Rajkapoor, B., Venugopal, Y., Anbu, J., Harikrishnan, N., Gobinath, M., and Ravichandran, V., Protective effect of Phyllanthus polyphyllus on acetaminophen induced hepatotoxicity in rats. Pak. J. Pharm. Sci., 21, 57–62 (2008).

    Google Scholar 

  28. Tokita, Y., Nakajima, K., Mochida, H., Iha, M., and Nagamine, T., Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by sandwich ELISA. Biosci. Biotechnol. Biochem., 74, 350–357 (2010).

    PubMed  Article  CAS  Google Scholar 

  29. Vidali, M., Stewart, S. F., and Albano, E., Interplay between oxidative stress and immunity in the progression of alcohol-mediated liver injury. Trends Mol. Med., 14, 63–71 (2008)

    PubMed  Article  CAS  Google Scholar 

  30. Yan, S. L., Wu, S. T., Yin, M. C., Chen, H. T., and Chen, H. C., Protective effects from carnosine and histidine on acetaminophen-induced liver injury. J. Food Sci., 74, H259–265 (2009).

    PubMed  Article  CAS  Google Scholar 

  31. Yang, J. W., Yoon, S. Y., Oh, S. J., Kim, S. K., and Kang, K. W., Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem. Biophys. Res. Commun., 346, 345–350 (2006).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soon-Sun Hong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hong, SW., Lee, HS., Jung, K.H. et al. Protective effect of fucoidan against acetaminophen-induced liver injury. Arch. Pharm. Res. 35, 1099–1105 (2012). https://doi.org/10.1007/s12272-012-0618-5

Download citation

Key words

  • Fucoidan
  • Acetaminophen
  • Liver injury
  • Anti-oxidant