Archives of Pharmacal Research

, Volume 35, Issue 6, pp 955–964 | Cite as

Synthesis, antimicrobial, and antiviral activities of some new 5-sulphonamido-8-hydroxyquinoline derivatives

  • Emad M. Kassem
  • Eslam R. El-Sawy
  • Howaida I. Abd-Alla
  • Adel H. Mandour
  • Dina Abdel-Mogeed
  • Mounir M. El-Safty
Research Articles Drug Design and Discovery

Abstract

A series of fused pyranopyrazole and pyranoimidazole, namely 5-(3,6-diamino-4-aryl-5-carbonitrile-pyrano(2,3-c)pyrazol-2-yl)sulphonyl-8-hydroxyquinolines (5a–e), 5-(6-amino-4-aryl-5-carbonitrile-pyrano(2,3-c)pyrazol-3-yl)sulphonamido-8-hydroxyquinolines (6a-e), 5-(2-thioxo-4-aryl-5-carbonitrile-6-amino-pyrano(2,3-d)imidazol-2-yl)sulphonyl-8-hydroxyquinolines (10a-e), and 5-(2-oxo-4-aryl-5-carbonitrile-6-amino-pyrano(2,3-d)imidazol-2-yl) sulphonyl-8-hydroxyquinolines (11a-e), have been prepared via condensation of some arylidine malononitriles with 5-sulphonamido-8-hydroxyquinoline derivatives 3, 4, 8 and 9. All the synthesized compounds were screened for their antimicrobial activities, and most of the tested compounds showed potent inhibition growth activity towards Escherichia coli, Pseudomonas aeruginosa (Gramnegative bacteria). Furthermore, six selected compounds were tested for their antiviral activity against avian paramyxovirus type1 (APMV-1) and laryngotracheitis virus (LTV), and the results showed that a concentration range of 3-4 μg per mL of compounds 2, 3, and 4 showed marked viral inhibitory activity for APMV-1 of 5000 tissue culture infected dose fifty (TCID50) and LTV of 500 TCID50 in Vero cell cultures based on their cytopathic effect. Chicken embryo experiments show that compounds 2, 3, and 4 possess high antiviral activity in vitro with an inhibitory concentration fifty (IC50) range of 3–4 μg per egg against avian APMV-1 and LTV and their toxic concentration fifty (CC50) of 200–300 μg per egg.

Key words

8-Hydroxyquinoline-5-sulphonyl chloride Pyrano(2,3-c)pyrazole Pyrano(2,3-d) imidazole Antimicrobial Antiviral activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bankovskis, J., Cirule, M., Brusilovskii, P. I., and Tsilinskaya, I. A., Synthesis of 5-alkylthio-8-hydroxyquinolines. Khim. Geterotsiklicheskikh Soedin., 11, 1501–1504 (1979).Google Scholar
  2. Barry, A. L. and Thornsberry, C., Susceptibility Testing: Diffusion Test Procedures, in Manual of Clinical Microbiology. Lennette, E. H., Balows, A., Hausler, W. J., Jr., and Truant, J. P. (Eds.), 3rd ed. American Society for Microbiology, Washington (DS), pp. 463–474, (1980).Google Scholar
  3. Callejo, M. J., Lafuente, P., Martín-León, N., Quinteiro, M., Seoane, C., and Soto, J. L., A convenient preparation of [1, 2,4]triazolo[1,5-a]pyridines from acetohydrazide derivatives. Synthetic and mechanistic aspects. J. Chem. Soc. Perkin Trans. I, 1687–1690 (1990).Google Scholar
  4. Chen, S., Chen, R., He, M., Pang, R., Tan, Z., and Yang, M., Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem., 17, 1948–1956 (2009).PubMedCrossRefGoogle Scholar
  5. Corson, B. B. and Stoughton, R. W., Reactions of alpha, betaunsaturated dinitriles. J. Am. Chem. Soc., 50, 2825–2837 (1928).CrossRefGoogle Scholar
  6. Cox, S., Buontempo, P. J., Wright-Minogue, J., DeMartino, J. L., Skelton, A. M., Ferrari, E., Schwartz, J., Rozhon, E. J., Linn, C. C., Girijavallabhan, V., and O’Connell, J. F., Antipicornavirus activity of SCH 47802 and analogs: in vitro and in vivo studies. Antiviral. Res., 32, 71–79 (1996).PubMedCrossRefGoogle Scholar
  7. Graham, G., Porter, H. D., and Weissberger, A., Synthesis and acylation of pyrazolines derived from hydrazine and methyl hydrazine. J. Am. Chem. Soc., 71, 983 (1949).CrossRefGoogle Scholar
  8. Heibron, I., Dictionary of Organic Compounds, 4th ed. Oxford University press, New York, p. 1374, (1965).Google Scholar
  9. Hoemann, M. Z., Xie, R. L., Rossi, R. F., Meyer, S., Sidhu, A., Cuny, G. D., and Hauske, J. R., Potent in vitro methicillinresistant Staphylococcus aureus activity of 2-(1H-indol-3-yl)tetrahydroquinoline derivatives. Bioorg. Med. Chem. Lett., 12, 129–132 (2002).PubMedCrossRefGoogle Scholar
  10. Hussein, M. A., Kafafy, A. H., Abdel-Moty, S. G., and Abou-Ghadir, O. M., Synthesis and biological activities of new substituted thiazoline-quinoline derivatives. Acta Pharm., 59, 365–382 (2009).PubMedCrossRefGoogle Scholar
  11. Jia, W., Liu, Y., Li, W., Liu, Y., Zhang, D., Zhang, P., and Gong, P., Synthesis and in vitro anti-hepatitis B virus activity of 6H-[1]benzothiopyrano[4,3-b]quinolin-9-ols. Bioorg. Med. Chem., 17, 4569–4574 (2009).PubMedCrossRefGoogle Scholar
  12. Kouznetsov, V. V., Vargas Mendez, L. Y., Milena Leal, S., Mora Cruz, U., Andres Coronado, C., Melendez Gomez, C. M., Romero Bohorquez, A. R., and Escobar Rivero, P., Targetoriented synthesis of antiparasitic 2-hetaryl substituted quinolines based on imino Diels-Alder reactions. Lett. Drug Des. Discov., 4, 293–296 (2007).CrossRefGoogle Scholar
  13. Lilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G., and Kozikowski, A. P., Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculo-sis. J. Med. Chem., 52, 2109–2118 (2009).PubMedCrossRefGoogle Scholar
  14. Meléndez Gómez, C. M., Kouznetsov, V. V., Sortino, M. A., Alvarez, S. L., and Zacchino, S. A., In vitro antifungal activity of polyfunctionalized 2-(hetero)arylquinolines prepared through imino Diels-Alder reactions. Bioorg. Med. Chem., 16, 7908–7920 (2008).PubMedCrossRefGoogle Scholar
  15. Meyyanathan, S. N., Murali, K. E., Chandrashekhar, H. R., Godavarthi, A., Dhanaraj, S. A., Vijayan, P., and Suresh, B., Synthesis of some amino acids incorporated 4(3H)-quinazolinones as possible antiherpes viral agents. Ind. Drugs, 43, 497–502 (2006).Google Scholar
  16. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods., 65, 55–63 (1983).PubMedCrossRefGoogle Scholar
  17. Reed, L. J. and Muench, H., A simple method of estimating 50 percent endpoint. Am. J. Hyg., 27, 493–497 (1938).Google Scholar
  18. Takatsy, G. X., The use of spiral loops in serological and virological method. Acta Microbial. Hung., 3, 191–194 (1956).Google Scholar
  19. Vargas, M. L. Y., Castelli, M. V., Kouznetsov, V. V., Urbina, G. J. M., López, S. N., Sortino, M., Enriz, R. D., Ribas, J. C., and Zacchino, S., In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorg. Med. Chem., 11, 1531–1550 (2003).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Emad M. Kassem
    • 1
  • Eslam R. El-Sawy
    • 2
  • Howaida I. Abd-Alla
    • 2
  • Adel H. Mandour
    • 2
  • Dina Abdel-Mogeed
    • 1
  • Mounir M. El-Safty
    • 3
  1. 1.Department of Therapeutic ChemistryNational Research CentreGizaEgypt
  2. 2.Department of Natural Compounds ChemistryNational Research CentreGizaEgypt
  3. 3.Central Laboratory for Evaluation of Veterinary BiologicsCairoEgypt

Personalised recommendations