Skip to main content

Novel small molecule Raf kinase inhibitors for targeted cancer therapeutics

Abstact

Aberrant activation of Raf signaling pathway is frequently found in various human tumors, it has been considered as distinct and promising molecular target for cancer therapeutics. B-Raf is most attractive drug target out of three Raf isoforms (A-Raf, B-Raf and C-Raf) because it exhibits high kinase activity due to frequent mutations in human tumors. However, most recently, it has been reported that Raf isoforms show the cross-activation in the presence of specific B-Raf inhibitors, which brings about the paradoxical p-ERK activation as well as tumor promoting effect. According to these findings, it remains controversy whether pan-Raf kinase inhibitor is more valuable and promising rather than specific B-Raf inhibitor under certain conditions in terms of cancer therapeutics. In this short review, novel Raf kinase inhibitors undergoing clinical investigation are introduced. Moreover, the paradoxical p-ERK activation is discussed with specific B-Raf inhibitors, PLX4032/4720 compounds.

This is a preview of subscription content, access via your institution.

References

  • Ahmad, T. and Eisen, T., Kinase inhibition with BAY 43-9006 in renal cell carcinoma. Clin. Cancer Res., 10, 6388S–6392S (2004).

    PubMed  Article  CAS  Google Scholar 

  • Ahnstedt, H., Saveland, H., Nilsson, O., and Edvinsson, L., Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway. BMC Neurosci., 12, 5 (2011).

    PubMed  Article  CAS  Google Scholar 

  • Amiri, P., Aikawa, M. E., Dove, J., Stuart, D. D., Poon, D., Pick, T., Ramurthy, S., Subramanian, S., Levine, B., Costales, A., Harris, A., and Paul, R., CHIR-265 is a potent selective inhibitor of c-Raf/B-Raf/mutB-Raf that effectively inhibits proliferation and survival of cancer cell lines with Ras/Raf pathway mutations. AACR Meeting Abstracts, 2006, 1140a (2006).

    Google Scholar 

  • Auclair, D., Miller, D., Yatsula, V., Pickett, W., Carter, C., Chang, Y., Zhang, X., Wilkie, D., Burd, A., Shi, H., Rocks, S., Gedrich, R., Abriola, L., Vasavada, H., Lynch, M., Dumas, J., Trail, P. A., and Wilhelm, S. M., Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia, 21, 439–445 (2007).

    PubMed  Article  CAS  Google Scholar 

  • Bollag, G., Hirth, P., Tsai, J., Zhang, J., Ibrahim, P. N., Cho, H., Spevak, W., Zhang, C., Zhang, Y., Habets, G., Burton, E. A., Wong, B., Tsang, G., West, B. L., Powell, B., Shellooe, R., Marimuthu, A., Nguyen, H., Zhang, K. Y., Artis, D. R., Schlessinger, J., Su, F., Higgins, B., Iyer, R., D’andrea, K., Koehler, A., Stumm, M., Lin, P. S., Lee, R. J., Grippo, J., Puzanov, I., Kim, K. B., Ribas, A., Mcarthur, G. A., Sosman, J. A., Chapman, P. B., Flaherty, K. T., Xu, X., Nathanson, K. L., and Nolop, K., Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 467, 596–599 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Brose, M. S., Volpe, P., Feldman, M., Kumar, M., Rishi, I., Gerrero, R., Einhorn, E., Herlyn, M., Minna, J., Nicholson, A., Roth, J. A., Albelda, S. M., Davies, H., Cox, C., Brignell, G., Stephens, P., Futreal, P. A., Wooster, R., Stratton, M. R., and Weber, B. L., BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res., 62, 6997–7000 (2002).

    PubMed  CAS  Google Scholar 

  • Burger, R. A., Overview of anti-angiogenic agents in development for ovarian cancer. Gynecol. Oncol., 121, 230–238 (2011).

    PubMed  Article  CAS  Google Scholar 

  • Chang, Y. S., Adnane, J., Trail, P. A., Levy, J., Henderson, A., Xue, D., Bortolon, E., Ichetovkin, M., Chen, C., Mcnabola, A., Wilkie, D., Carter, C. A., Taylor, I. C., Lynch, M., and Wilhelm, S., Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother. Pharmacol., 59, 561–674 (2007).

    PubMed  Article  CAS  Google Scholar 

  • Cichowski, K. and Janne, P. A., Drug discovery: inhibitors that activate. Nature, 464, 358–359 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Corcoran, R. B., Dias-Santagata, D., Bergethon, K., Iafrate, A. J., Settleman, J., and Engelman, J. A., BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci. Signal., 3, ra84 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Dhomen, N. and Marais, R., BRAF signaling and targeted therapies in melanoma. Hematol. Oncol. Clin. North Am., 23, 529–545, ix (2009).

    PubMed  Article  Google Scholar 

  • Dumas, J., Smith, R. A., and Lowinger, T. B., Recent developments in the discovery of protein kinase inhibitors from the urea class. Curr. Opin. Drug Discov. Devel., 7, 600–616 (2004).

    PubMed  CAS  Google Scholar 

  • Eisen, T., Ahmad, T., Flaherty, K. T., Gore, M., Kaye, S., Marais, R., Gibbens, I., Hackett, S., James, M., Schuchter, L. M., Nathanson, K. L., Xia, C., Simantov, R., Schwartz, B., Poulin-Costello, M., O’dwyer, P. J., and Ratain, M. J., Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer, 95, 581–586 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., Mcarthur, G. A., Sosman, J. A., O’dwyer, P. J., Lee, R. J., Grippo, J. F., Nolop, K., and Chapman, P. B., Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med., 363, 809–819 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Garnett, M. J. and Marais, R., Guilty as charged: B-RAF is a human oncogene. Cancer Cell, 6, 313–319 (2004).

    PubMed  Article  CAS  Google Scholar 

  • Guida, T., Anaganti, S., Provitera, L., Gedrich, R., Sullivan, E., Wilhelm, S. M., Santoro, M., and Carlomagno, F., Sorafenib inhibits imatinib-resistant KIT and platelet-derived growth factor receptor beta gatekeeper mutants. Clin. Cancer Res., 13, 3363–3369 (2007).

    PubMed  Article  CAS  Google Scholar 

  • Halaban, R., Zhang, W., Bacchiocchi, A., Cheng, E., Parisi, F., Ariyan, S., Krauthammer, M., Mccusker, J. P., Kluger, Y., and Sznol, M., PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment. Cell Melanoma Res., 23, 190–200 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B. J., Anderson, D. J., Alvarado, R., Ludlam, M. J., Stokoe, D., Gloor, S. L., Vigers, G., Morales, T., Aliagas, I., Liu, B., Sideris, S., Hoeflich, K. P., Jaiswal, B. S., Seshagiri, S., Koeppen, H., Belvin, M., Friedman, L. S., and Malek, S., RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 464, 431–435 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Hauschild, A., Agarwala, S. S., Trefzer, U., Hogg, D., Robert, C., Hersey, P., Eggermont, A., Grabbe, S., Gonzalez, R., Gille, J., Peschel, C., Schadendorf, D., Garbe, C., O’day, S., Daud, A., White, J. M., Xia, C., Patel, K., Kirkwood, J. M., and Keilholz, U., Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol., 27, 2823–2830 (2009).

    PubMed  Article  CAS  Google Scholar 

  • Heidorn, S. J., Milagre, C., Whittaker, S., Nourry, A., Niculescu-Duvas, I., Dhomen, N., Hussain, J., Reis-Filho, J. S., Springer, C. J., Pritchard, C., and Marais, R., Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell, 140, 209–221 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Hoeflich, K. P., Herter, S., Tien, J., Wong, L., Berry, L., Chan, J., O’brien, C., Modrusan, Z., Seshagiri, S., Lackner, M., Stern, H., Choo, E., Murray, L., Friedman, L. S., and Belvin, M., Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Res., 69, 3042–3051 (2009).

    PubMed  Article  CAS  Google Scholar 

  • Huang, S. and Sinicrope, F. A., Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Mol. Cancer Ther., 9, 742–750 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Huynh, H., Lee, J. W., Chow, P. K., Ngo, V. C., Lew, G. B., Lam, I. W., Ong, H. S., Chung, A., Soo, K. C., Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Mol. Cancer Ther., 8, 152–159 (2009)

    PubMed  Article  CAS  Google Scholar 

  • Jiang, C. C., Lai, F., Thorne, R. F., Yang, F., Liu, H., Hersey, P., and Zhang, X. D., MEK-independent survival of BRAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin. Cancer Res., 17, 721–730 (2011).

    PubMed  Article  CAS  Google Scholar 

  • Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., Emery, C. M., Stransky, N., Cogdill, A. P., Barretina, J., Caponigro, G., Hieronymus, H., Murray, R. R., Salehi-Ashtiani, K., Hill, D. E., Vidal, M., Zhao, J. J., Yang, X., Alkan, O., Kim, S., Harris, J. L., Wilson, C. J., Myer, V. E., Finan, P. M., Root, D. E., Roberts, T. M., Golub, T., Flaherty, K. T., Dummer, R., Weber, B. L., Sellers, W. R., Schlegel, R., Wargo, J. A., Hahn, W. C., and Garraway, L. A., COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468, 968–972 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Joseph, E. W., Pratilas, C. A., Poulikakos, P. I., Tadi, M., Wang, W., Taylor, B. S., Halilovic, E., Persaud, Y., Xing, F., Viale, A., Tsai, J., Chapman, P. B., Bollag, G., Solit, D. B., and Rosen, N., The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. U. S. A., 107, 14903–14908 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Kaplan, F. M., Shao, Y., Mayberry, M. M., and Aplin, A. E., Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene, 30, 366–371 (2011).

    PubMed  Article  CAS  Google Scholar 

  • Karasarides, M., Chiloeches, A., Hayward, R., Niculescu-Duvaz, D., Scanlon, I., Friedlos, F., Ogilvie, L., Hedley, D., Martin, J., Marshall, C. J., Springer, C. J., and Marais, R., B-RAF is a therapeutic target in melanoma. Oncogene, 23, 6292–6298 (2004).

    PubMed  Article  CAS  Google Scholar 

  • Kefford, R., Arkenau, H., Brown, M. P., Millward, M., Infante, J. R., Long, G. V., Ouellet, D., Curtis, M., Lebowitz, P. F., and Falchook, G. S., Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J. Clin. Oncol. 28, Abstract 8503 (2010).

    Google Scholar 

  • Khazak, V., Astsaturov, I., Serebriiskii, I. G., and Golemis, E. A., Selective Raf inhibition in cancer therapy. Expert Opin. Ther. Targets, 11, 1587–1609 (2007).

    PubMed  Article  CAS  Google Scholar 

  • Kim, S., Yazici, Y. D., Calzada, G., Wang, Z. Y., Younes, M. N., Jasser, S. A., El-Naggar, A. K., and Myers, J. N., Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Mol. Cancer Ther., 6, 1785–1792 (2007).

    PubMed  Article  CAS  Google Scholar 

  • King, A. J., Patrick, D. R., Batorsky, R. S., Ho, M. L., Do, H. T., Zhang, S. Y., Kumar, R., Rusnak, D. W., Takle, A. K., Wilson, D. M., Hugger, E., Wang, L., Karreth, F., Lougheed, J. C., Lee, J., Chau, D., Stout, T. J., May, E. W., Rominger, C. M., Schaber, M. D., Luo, L., Lakdawala, A. S., Adams, J. L., Contractor, R. G., Smalley, K. S., Herlyn, M., Morrissey, M. M., Tuveson, D. A., and Huang, P. S., Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res., 66, 11100–11105 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Kolch, W., Kotwaliwale, A., Vass, K., and Janosch, P., The role of Raf kinases in malignant transformation. Expert Rev. Mol. Med., 4, 1–18 (2002).

    PubMed  Article  Google Scholar 

  • Lee, J. T. and Mccubrey, J. A., BAY-43-9006 Bayer/Onyx. Curr. Opin. Investig. Drugs, 4, 757–763 (2003).

    PubMed  CAS  Google Scholar 

  • Liu, L., Cao, Y., Chen, C., Zhang, X., Mcnabola, A., Wilkie, D., Wilhelm, S., Lynch, M., and Carter, C., Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 66, 11851–11858 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Liu, Y. and Gray, N. S., Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2, 358–364 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Lowinger, T. B., Riedl, B., Dumas, J., and Smith, R. A., Design and discovery of small molecules targeting raf-1 kinase. Curr. Pharm. Des., 8, 2269–78 (2002).

    PubMed  Article  CAS  Google Scholar 

  • Lyons, J. F., Wilhelm, S., Hibner, B., and Bollag, G., Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer, 8, 219–225 (2001).

    PubMed  Article  CAS  Google Scholar 

  • Mcdermott, U., Sharma, S. V., Dowell, L., Greninger, P., Montagut, C., Lamb, J., Archibald, H., Raudales, R., Tam, A., Lee, D., Rothenberg, S. M., Supko, J. G., Sordella, R., Ulkus, L. E., Iafrate, A. J., Maheswaran, S., Njauw, C. N., Tsao, H., Drew, L., Hanke, J. H., Ma, X. J., Erlander, M. G., Gray, N. S., Haber, D. A., and Settleman, J., Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl. Acad. Sci. U. S. A., 104, 19936–19941 (2007).

    PubMed  Article  CAS  Google Scholar 

  • Montagut, C. and Settleman, J., Targeting the RAF-MEKERK pathway in cancer therapy. Cancer Lett., 283, 125–134 (2009).

    PubMed  Article  CAS  Google Scholar 

  • Montagut, C., Sharma, S. V., Shioda, T., Mcdermott, U., Ulman, M., Ulkus, L. E., Dias-Santagata, D., Stubbs, H., Lee, D. Y., Singh, A., Drew, L., Haber, D. A., and Settleman, J., Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res., 68, 4853–4861 (2008).

    PubMed  Article  CAS  Google Scholar 

  • Mordant, P., Loriot, Y., Leteur, C., Calderaro, J., Bourhis, J., Wislez, M., Soria, J. C., and Deutsch, E., Dependence on phosphoinositide 3-kinase and RAS-RAF pathways drive the activity of RAF265, a novel RAF/VEGFR2 inhibitor, and RAD001 (Everolimus) in combination. Mol. Cancer Ther., 9, 358–368 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Moreno-Aspitia, A., Clinical overview of sorafenib in breast cancer. Future Oncol., 6, 655–663 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Murphy, D. A., Makonnen, S., Lassoued, W., Feldman, M. D., Carter, C., and Lee, W. M., Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006). Am. J. Pathol., 169, 1875–1885 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Lee, M. K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., Mcarthur, G., Sosman, J. A., Ribas, A., and Lo, R. S., Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468, 973–977 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Ott, P. A., Hamilton, A., Min, C., Safarzadeh-Amiri, S., Goldberg, L., Yoon, J., Yee, H., Buckley, M., Christos, P. J., Wright, J. J., Polsky, D., Osman, I., Liebes, L., and Pavlick, A. C., A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One, 5, e15588 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Panka, D. J., Wang, W., Atkins, M. B., and Mier, J. W., The Raf inhibitor BAY 43-9006 (Sorafenib) induces caspaseindependent apoptosis in melanoma cells. Cancer Res., 66, 1611–1619 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Plaza-Menacho, I., Mologni, L., Sala, E., Gambacorti-Passerini, C., Magee, A. I., Links, T. P., Hofstra, R. M., Barford, D., and Isacke, C. M., Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J. Biol. Chem., 282, 29230–29240 (2007).

    PubMed  Article  CAS  Google Scholar 

  • Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M., and Rosen, N., RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature, 464, 427–430 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Robinson, M. J., and Cobb, M. H. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol., 9, 180–186 (1997).

    PubMed  Article  CAS  Google Scholar 

  • Sala, E., Mologni, L., Truffa, S., Gaetano, C., Bollag, G. E., and Gambacorti-Passerini, C., BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol. Cancer Res., 6, 751–759 (2008).

    PubMed  Article  CAS  Google Scholar 

  • Salvatore, G., De Falco, V., Salerno, P., Nappi, T. C., Pepe, S., Troncone, G., Carlomagno, F., Melillo, R. M., Wilhelm, S. M., and Santoro, M., BRAF is a therapeutic target in aggressive thyroid carcinoma. Clin. Cancer Res., 12, 1623–1629 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Salvatore, G., Giannini, R., Faviana, P., Caleo, A., Migliaccio, I., Fagin, J. A., Nikiforov, Y. E., Troncone, G., Palombini, L., Basolo, F., and Santoro, M., Analysis of BRAF point mutation and RET/PTC rearrangement refines the fineneedle aspiration diagnosis of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab., 89, 5175–5180 (2004).

    PubMed  Article  CAS  Google Scholar 

  • Sharma, A., Tran, M. A., Liang, S., Sharma, A. K., Amin, S., Smith, C. D., Dong, C., and Robertson, G. P., Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res., 66, 8200–8209 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Shen, M., Lyne, P., Aquila, B., and Drew, L., Linking molecular characteristics to the pharmacological response of a panel of cancer cell lines to the BRAF inhibitor, AZ628. AACR Meeting Abstracts, 2007, 5249 (2007).

    Google Scholar 

  • Shields, J. M., Pruitt, K., Mcfall, A., Shaub, A., and Der, C. J., Understanding Ras:’ it ain’t over ‘til it’s over’. Trends Cell. Biol., 10, 147–154 (2000).

    PubMed  Article  CAS  Google Scholar 

  • Socinski, M. A., Multitargeted receptor tyrosine kinase inhibition: An antiangiogenic strategy in non-small cell lung cancer. Cancer Treat. Rev., 37, 611–617 (2011).

    PubMed  Article  CAS  Google Scholar 

  • Stuart, D., Aardalen, K., Venetsanakos, E., Nagel, T., Wallroth, M., Batt, D., Ramurthy, S., Poon, D., Faure, M., Lorenzana, E., Salangsang, F., Dove, J., Garrett, E., Aikawa, M., Kaplan, A., Amiri, P., and Renhowe, P., RAF265 is a potent Raf kinase inhibitor with selective anti-proliferative activity in vitro and in vivo. AACR Meeting Abstracts, 2008, 4876 (2008).

    Google Scholar 

  • Takezawa, K., Okamoto, I., Yonesaka, K., Hatashita, E., Yamada, Y., Fukuoka, M., and Nakagawa, K., Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells. Cancer Res., 69, 6515–6521 (2009).

    PubMed  Article  CAS  Google Scholar 

  • Takle, A. K., Brown, M. J., Davies, S., Dean, D. K., Francis, G., Gaiba, A., Hird, A. W., King, F. D., Lovell, P. J., Naylor, A., Reith, A. D., Steadman, J. G., and Wilson, D. M., The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett., 16, 378–381 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., Bremer, R., Gillette, S., Kong, J., Haass, N. K., Sproesser, K., Li, L., Smalley, K. S., Fong, D., Zhu, Y. L., Marimuthu, A., Nguyen, H., Lam, B., Liu, J., Cheung, I., Rice, J., Suzuki, Y., Luu, C., Settachatgul, C., Shellooe, R., Cantwell, J., Kim, S. H., Schlessinger, J., Zhang, K. Y., West, B. L., Powell, B., Habets, G., Zhang, C., Ibrahim, P. N., Hirth, P., Artis, D. R., Herlyn, M., and Bollag, G., Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. U. S. A., 105, 3041–3046 (2008).

    PubMed  Article  CAS  Google Scholar 

  • Ulivi, P., Arienti, C., Amadori, D., Fabbri, F., Carloni, S., Tesei, A., Vannini, I., Silvestrini, R., and Zoli, W., J. Cell. Physiol., 220, 214–221 (2009).

    PubMed  Article  CAS  Google Scholar 

  • Villanueva, J., Vultur, A., Lee, J. T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A. K., Wubbenhorst, B., Xu, X., Gimotty, P. A., Kee, D., Santiago-Walker, A. E., Letrero, R., D’andrea, K., Pushparajan, A., Hayden, J. E., Brown, K. D., Laquerre, S., Mcarthur, G. A., Sosman, J. A., Nathanson, K. L., and Herlyn, M., Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 18, 683–695 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Wan, P. T., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D., and Marais, R., Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 116, 855–867 (2004).

    PubMed  Article  CAS  Google Scholar 

  • Wellbrock, C. and Hurlstone, A., BRAF as therapeutic target in melanoma. Biochem. Pharmacol., 80, 561–567 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., Mcnabola, A., Rong, H., Chen, C., Zhang, X., Vincent, P., Mchugh, M., Cao, Y., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu, L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B., Post, L. E., Bollag, G., and Trail, P. A., BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 64, 7099–7109 (2004).

    PubMed  Article  CAS  Google Scholar 

  • Xing, J., Liu, R., Xing, M., and Trink, B., The BRAFT1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032 (RG7204). Biochem. Biophys. Res. Commun., 404, 958–962 (2011).

    PubMed  Article  CAS  Google Scholar 

  • Yang, F., Van Meter, T. E., Buettner, R., Hedvat, M., Liang, W., Kowolik, C. M., Mepani, N., Mirosevich, J., Nam, S., Chen, M. Y., Tye, G., Kirschbaum, M., and Jove, R., Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol. Cancer Ther., 7, 3519–3526 (2008).

    PubMed  Article  CAS  Google Scholar 

  • Yang, H., Higgins, B., Kolinsky, K., Packman, K., Go, Z., Iyer, R., Kolis, S., Zhao, S., Lee, R., Grippo, J. F., Schostack, K., Simcox, M. E., Heimbrook, D., Bollag, G., and Su, F., RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res., 70, 5518–5527 (2010).

    PubMed  Article  CAS  Google Scholar 

  • Yoon, S. and Seger, R., The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors, 24, 21–44 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Zhang, W., Konopleva, M., Shi, Y.X., McQueen, T., Harris, D., Ling, X., Estrov, Z., Quintas-Cardama, A., Small, D., Cortes. J., Andreeff, M., Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J. Natl. Cancer Inst., 100, 184–198 (2008).

    PubMed  Article  CAS  Google Scholar 

  • Zitzmann, K., De Toni, E., Von Ruden, J., Brand, S., Goke, B., Laubender, R. P., and Auernhammer, C. J., The novel Raf inhibitor Raf265 decreases Bcl-2 levels and confers TRAIL-sensitivity to neuroendocrine tumour cells. Endocr. Relat. Cancer, 18, 277–285 (2011).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taebo Sim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, DH., Sim, T. Novel small molecule Raf kinase inhibitors for targeted cancer therapeutics. Arch. Pharm. Res. 35, 605–615 (2012). https://doi.org/10.1007/s12272-012-0403-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0403-5

Key words

  • Raf kinase
  • Molecular-targeted inhibitor
  • Cancer
  • Sorafenib
  • PLX4720/4032