Skip to main content
Log in

Evaluation of interstitial protein delivery in multicellular layers model

  • Research Articles
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The limited efficacy of anticancer protein drugs is related to their poor distribution in tumor tissue. We examined interstitial delivery of four model proteins of different molecular size and bioaffinity in multicellular layers (MCL) of human cancer cells. Model proteins were tumor necrosis factor-related apoptosis-including ligand (TRAIL), cetuximab, RNase A, and IgG. MCLs were cultured in Transwell inserts, exposed to drugs, then cryo-sectioned for image acquisition using fluorescence microscopy (fluorescent dye-labeled TRAIL, RNase A, IgG) or immunohistochemistry (cetuximab). TRAIL and cetuximab showed partial penetration into MCLs, whereas RNase A and IgG showed insignificant penetration. At 10-fold higher dose, a significant increase in penetration was observed for IgG only, while cetuximab showed an intense accumulation limited to the front layers. PEGylated TRAIL and RNase A formulated in a heparin-Pluronic (HP) nanogel showed significantly improved penetration attributable to increased stability and extracellular matrix binding, respectively. IgG penetration was significantly enhanced with paclitaxel pretreatment as a penetration enhancer. The present study suggests that MCL culture may be useful in evaluation of protein delivery in the tumor interstitium. Four model proteins showed limited interstitial penetration in MCL cultures. Bioaffinity, rather than molecular size, seems to have a positive effect on tissue penetration, although high binding affinity may lead to sequestration in the front cell layers. Polymer conjugation and nanoformulation, such as PEGylation and HP nanogel, or use of penetration enhancers are potential strategies to increase interstitial delivery of anticancer protein drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, G. P., Schier, R., Mccall, A. M., Simmons, H. H., Horak, E. M., Alpaugh, R. K., Marks, J. D., and Weiner, L. M., High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res., 61, 4750–4755 (2001).

    PubMed  CAS  Google Scholar 

  • Al-Abd, A. M., Lee, J. H., Kim, S. Y., Kun, N., and Kuh, H. J., Novel application of multicellular layers culture for in situ evaluation of cytotoxicity and penetration of paclitaxel. Cancer Sci., 99, 423–431 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Baker, J. H., Lindquist, K. E., Huxham, L. A., Kyle, A. H., Sy, J. T., and Minchinton, A. I., Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clin. Cancer Res., 14, 2171–2179 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Beckman, R. A., Weiner, L. M., and Davis, H. M., Antibody constructs in cancer therapy. Cancer, 109, 170–179 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Bellail, A. C., Qi, L., Mulligan, P., Chhabra, V., and Hao, C., TRAIL agonists on clinical trials for cancer therapy: The promises and the challenges. Rev. Recent Clin. Trials, 4, 34–41 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Calaycay, J., Pande, H., Lee, T., Borsi, L., Siri, A., Shively, J. E., and Zardi, L., Primary structure of a DNA- and heparinbinding domain (Domain III) in human plasma fibronectin. J. Biol. Chem., 260, 12136–12141 (1985).

    PubMed  CAS  Google Scholar 

  • Capila, I. and Linhardt, R. J., Heparin-protein interactions. Angew. Chem. Int. Ed. Engl., 41, 391–412 (2002).

    Article  PubMed  Google Scholar 

  • Chae, S. Y., Kim, T. H., Park, K., Jin, C. H., Son, S., Lee, S., Youn, Y. S., Kim, K., Jo, D. G., Kwon, I. C., Chen, X., and Lee, K. C., Improved antitumor activity and tumor targeting of NH2-terminal-specific PEGylated tumor necrosis factorrelated apoptosis-inducing ligand. Mol. Cancer Ther., 9, 1719–1729 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. H., Jang, J. Y., Joung, Y. K., Kwon, M. H., and Park, K. D., Intracellular delivery and anti-cancer effect of selfassembled heparin-Pluronic nanogels with RNase A. J. Control. Release, 147, 420–427 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Delbaldo, C., Pierga, J., Dieras, V., Faivre, S., Laurence, V., Vedovato, J., Bonnay, M., Mueser, M., Nolting, A., and Kovar, A., Pharmacokinetic profile of cetuximab (ErbituxTM) alone and in combination with irinotecan in patients with advanced EGFR-positive adenocarcinoma. Eur. J. Cancer, 41, 1739–1745 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Dreher, M. R., Liu, W., Michelich, C. R., Dewhirst, M. W., Yuan, F., and Chilkoti, A., Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst., 98, 335–344 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Fujimori, K., Covell, D. G., Fletcher, J. E., and Weinstein, J. N., A modeling analysis of monoclonal antibody percolation through tumors: A binding-site barrier. J. Nucl. Med., 31, 1191–1198 (1990).

    PubMed  CAS  Google Scholar 

  • Go, D. H., Joung, Y. K., Lee, S. Y., Lee, M. C., and Park, K. D., Tetronic-oligolactide-heparin hydrogel as a multi-functional scaffold for tissue regeneration. Macromol. Biosci., 8, 1152–1160 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Hao, Y. L., Deng, Y. J., Chen, Y., Wang, X. M., Zhong, H. J., and Suo, X. B., In vitro and in vivo studies of different liposomes containing topotecan. Arch. Pharm. Res., 28, 626–635 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Holden, S. A., Lan, Y., Pardo, A. M., Wesolowski, J. S., and Gillies, S. D., Augmentation of antitumor activity of an antibody-interleukin 2 immunocytokine with chemotherapeutic agents. Clin. Cancer Res., 7, 2862–2869 (2001).

    PubMed  CAS  Google Scholar 

  • Huxham, L. A., Kyle, A. H., Baker, J. H., Nykilchuk, L. K., and Minchinton, A. I., Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Res., 64, 6537–6541 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Jang, S. H., Wientjes, M. G., and Au, J. L., Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment: Effect of treatment schedule. J. Pharmacol. Exp. Ther., 296, 1035–1042 (2001).

    PubMed  CAS  Google Scholar 

  • Jang, S. H., Wientjes, M. G., Lu, D., and Au, J. L., Drug delivery and transport to solid tumors. Pharm. Res., 20, 1337–1350 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, R. W., Frew, A. J., and Smyth, M. J., The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer, 8, 782–798 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kemp, M. M. and Linhardt, R. J., Heparin-based nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2, 77–87 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Kim, M. H., Billiar, T. R., and Seol, D. W., The secretable form of trimeric TRAIL, a potent inducer of apoptosis. Biochem. Biophys. Res. Commun., 321, 930–935 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kruyt, F. A., TRAIL and cancer therapy. Cancer Lett., 263, 14–25 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kuh, H. J., Jang, S. H., Wientjes, M. G., Weaver, J. R., and Au, J. L., Determinants of paclitaxel penetration and accumulation in human solid tumor. J. Pharmacol. Exp. Ther., 290, 871–880 (1999).

    PubMed  CAS  Google Scholar 

  • Kyle, A. H., Huxham, L. A., Yeoman, D. M., and Minchinton, A. I., Limited tissue penetration of taxanes: A mechanism for resistance in solid tumors. Clin. Cancer Res., 13, 2804–2810 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.-I., Nagayya-Sriraman, S.-K., Shanmugam, S., Baskaran, R., Yong, C.-S., Yoon, S.-K., Choi, H.-G., and Yoo, B.-K., Effect of charge carrier lipid on skin penetration, retention, and hair growth of topically applied finasteridecontaining liposomes. Biomol Ther, 19, 231–236 (2011).

    Article  CAS  Google Scholar 

  • Liao, Y. H., Jones, S. A., Forbes, B., Martin, G. P., and Brown, M. B., Hyaluronan: Pharmaceutical characterization and drug delivery. Drug Deliv., 12, 327–342 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lofblom, J., Feldwisch, J., Tolmachev, V., Carlsson, J., Stahl, S., and Frejd, F. Y., Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett., 584, 2670–2680 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Lu, D., Wientjes, M. G., Lu, Z., and Au, J. L., Tumor priming enhances delivery and efficacy of nanomedicines. J. Pharmacol. Exp. Ther., 322, 80–88 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Yang, J., and Sega, E., Issues related to targeted delivery of proteins and peptides. AAPS J., 8, 466–478 (2006).

    Article  Google Scholar 

  • Lu, Z., Yeh, T. K., Wang, J., Chen, L., Lyness, G., Xin, Y., Wientjes, M. G., Bergdall, V., Couto, G., Alvarez-Berger, F., Kosarek, C. E., and Au, J. L., Paclitaxel gelatin nanoparticles for intravesical bladder cancer therapy. J. Urol., 185, 1478–1483 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Luo, F. R., Yang, Z., Dong, H., Camuso, A., Mcglinchey, K., Fager, K., Flefleh, C., Kan, D., Inigo, I., Castaneda, S., Wong, T. W., Kramer, R. A., et al., Prediction of active drug plasma concentrations achieved in cancer patients by pharmacodynamic biomarkers identified from the geo human colon carcinoma xenograft model. Clin. Cancer Res., 11, 5558–5565 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Mastrobattista, E., Crommelin, D. J., Wilschut, J., and Storm, G., Targeted liposomes for delivery of protein-based drugs into the cytoplasm of tumor cells. J. Liposome Res., 12, 57–65 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Minchinton, A. I. and Tannock, I. F., Drug penetration in solid tumours. Nat. Rev. Cancer, 6, 583–592 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Na, S. J., Chae, S. Y., Lee, S., Park, K., Kim, K., Park, J. H., Kwon, I. C., Jeong, S. Y., and Lee, K. C., Stability and bioactivity of nanocomplex of TNF-related apoptosis-inducing ligand. Int. J. Pharm., 363, 149–154 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Oh, J. M., Ryu, Y. K., Lim, J. S., and Moon, E. Y., Hypoxia induces paclitaxel-resistance through ROS production. Biomol. Ther., 18, 145–151 (2010).

    Article  CAS  Google Scholar 

  • Park, K., Lee, G. Y., Kim, Y. S., Yu, M., Park, R. W., Kim, I. S., Kim, S. Y., and Byun, Y., Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. J. Control. Release, 114, 300–306 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Park, K. M., Lee, S. Y., Joung, Y. K., Na, J. S., Lee, M. C., and Park, K. D., Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater., 5, 1956–1965 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Primeau, A. J., Rendon, A., Hedley, D., Lilge, L., and Tannock, I. F., The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res., 11, 8782–8788 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V. P. and Lukyanov, A. N., Peptide and protein drug delivery to and into tumors: Challenges and solutions. Drug Discov. Today, 8, 256–299 (2003).

    Article  Google Scholar 

  • Trabzuni, D., Famulski, K. S., and Ahmad, M., Functional analysis of tumour necrosis factor-alpha-related apoptosisinducing ligand (TRAIL): Cysteine-230 plays a critical role in the homotrimerization and biological activity of this novel tumoricidal cytokine. Biochem. J., 350 Pt 2, 505–510 (2000).

    Article  Google Scholar 

  • Tredan, O., Galmarini, C. M., Patel, K., and Tannock, I. F., Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst., 99, 1441–1454 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Verel, I., Heider, K. H., Siegmund, M., Ostermann, E., Patzelt, E., Sproll, M., Snow, G. B., Adolf, G. R., and Van Dongen, G. A., Tumor targeting properties of monoclonal antibodies with different affinity for target antigen CD44v6 in nude mice bearing head-and-neck cancer xenografts. Int. J. Cancer, 99, 396–402 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, S. V., Bronich, T. K., and Kabanov, A. V., Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv. Drug Deliv. Rev., 54, 135–147 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Weiner, L. M., Surana, R., and Wang, S., Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol., 10, 317–327 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Wild, R., Cetuximab preclinical antitumor activity (monotherapy and combination based) is not predicted by relative total or activated epidermal growth factor receptor tumor expression levels. Mol. Cancer Ther., 5, 104–113 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wong, H. L., Shen, Z., Lu, Z., Wientjes, M. G., and Au, J. L., Paclitaxel tumor-priming enhances sirna delivery and transfection in 3-dimensional tumor cultures. Mol. Pharm., 8, 833–840 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Hsu, K., and Beckman, R. A., Antibody-based therapy for solid tumors. Cancer, 14, 178–183 (2008).

    Article  CAS  Google Scholar 

  • Yan, L., Ehrlich, P. J., Gibson, R., Pickett, C., and Beckman, R. A., How can we improve antibody-based cancer therapy? MAbs, 1, 67–70 (2009).

    Article  PubMed  Google Scholar 

  • Youn, Y. S., Shin, M. J., Chae, S. Y., Jin, C.-H., Kim, T. H., and Lee, K. C., Biological and physicochemical evaluation of the conformational stability of tumor necrosis factorrelated apoptosis-inducing ligand (TRAIL). Biotechnol. Lett., 29, 713–721 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Jeong Kuh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SY., Kim, T.H., Choi, J.H. et al. Evaluation of interstitial protein delivery in multicellular layers model. Arch. Pharm. Res. 35, 531–541 (2012). https://doi.org/10.1007/s12272-012-0317-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0317-2

Key words

Navigation