Skip to main content
Log in

Enhancement of pentobarbital-induced sleep by apigenin through chloride ion channel activation

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

This experiment was performed to investigate whether apigenin has hypnotic effects and/or enhances pentobarbital-induced sleep behaviors through the GABAergic systems. Apigenin prolonged sleep time induced by pentobarbital similar to muscimol, a GABAA receptors agonist. Apigenin also increased sleep rate and sleep time in the combined administration with pentobarbital at the sub-hypnotic dosage, and showed synergic effects with muscimol in potentiating sleep onset and enhancing sleep time induced by pentobarbital. In addition, both of apigeinin and pentobarbital increased chloride influx in primary cultured cerebellar granule cells. Apigenin increased glutamate decarboxylase (GAD) and had no effect on the expression of GABAA receptorα-, β-, γ-subunits in n hippocampus of mouse brain, showing different expression of subunits from pentobarbital treatment group. In conclusion, it is suggested that apigenin augments pentobarbital-induced sleep behaviors through chloride ion channel activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avallone, R., Zanoli, P., Puia, G., Kleinschnitz, M., Schreier, P., and Baraldi, M., Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem. Pharmacol., 59, 1387–1394 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Brailowsky, S. and Garcia, O., Ethanol, GABA and epilepsy. Arch. Med. Res., 30, 3–9 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Buddhala, C., Hsu, C. C., and Wu, J. Y., A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem. Int., 55, 9–12 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Chebib, M. and Johnston, G. A., GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology. J. Med. Chem., 43, 1427–1447 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Chistina Grobin, A., Inglefield, J. R., Schwartz-Bloom, R. D., Devaud, L. L., and Morrow, A. L., Fluorescence imaging of GABAA receptor-mediated intracellular [Cl-] in P19-N cells reveals unique pharmacological properties. Brain Res., 827, 1–11 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Darias, V., Abdala, S., Martin-Herrera, D., Tello, M. L., and Vega, S., CNS effects of a series of 1,2,4-triazolyl heterocarboxylic derivatives. Pharmazie, 53, 477–481 (1998).

    PubMed  CAS  Google Scholar 

  • Davies, M., Bateson, A. N., and Dunn, S. M., Molecular biology of the GABA(A) receptor: functional domains implicated by mutational analysis. Front. Biosci., 1, d214–d233 (1996).

    PubMed  CAS  Google Scholar 

  • De Sousa, F. C., Pereira, B. A., Lima, V. T., Lacerda, C. D., Melo, C. T., Barbosa-Filho, J. M., Vasconcelos, S. M., and Viana, G. S., Central nervous system activity of yangambin from Ocotea duckei Vattimo (Lauraceae) in mice. Phytother. Res., 19, 282–286 (2005).

    Article  PubMed  Google Scholar 

  • Doghramji, K., The epidemiology and diagnosis of insomnia. Am. J. Manag. Care, 12, S214–S220 (2006).

    PubMed  Google Scholar 

  • Follesa, P., Porcu, P., Sogliano, C., Cinus, M., Biggio, F., Mancuso, L., Mostallino, M. C., Paoletti, A. M., Purdy, R. H., Biggio, G., and Concas, A., Changes in GABAA receptor gamma 2 subunit gene expression induced by long-term administration of oral contraceptives in rats. Neuropharmacology, 42, 325–336 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ganzera, M., Pocher, A., and Stuppner, H., Differentiation of Cirsium japonicum and C. setosum by TLC and HPLCMS. Phytochem. Anal., 16, 205–209 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Glowinski, J. and Iversen, L. L., Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J. Neurochem., 13, 655–669 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Han, H., Ma, Y., Eun, J. S., Hong, J. T., and Oh, K. W., Anxiolytic-like effects of cyclopeptide fraction alkaloids of Zizyphi Spinosi Semen: possible involvement of GABAA receptors. Biomol. Ther., 16, 261–269 (2008).

    Article  CAS  Google Scholar 

  • Jager, A. K., Krydsfeldt, K., and Rasmussen, H. B., Bioassayguided isolation of apigenin with GABA-benzodiazepine activity from Tanacetum parthenium. Phytother. Res., 23, 1642–1644 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Alam, M. N., Rai, S., Bashir, T., Mcginty, D., and Szymusiak, R., Central nervous system sites of the sleep promoting effects of eszopiclone in rats. Neuroscience, 181, 67–78 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., Han, H., Eun, J. S., Kim, H. C., Hong, J. T., and Oh, K. W., Sanjoinine A isolated from Zizyphi Spinosi Semen augments pentobarbital-induced sleeping behaviors through the modification of GABA-ergic systems. Biol. Pharm. Bull., 30, 1748–1753 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., Ma, H., Jo, Y. J., Kim, D. S., Woo, S. S., Li, R., Hong, J. T., Moon, D. C., Oh, K. W., and Eun, J. S., Honokiol potentiates pentobarbital-induced sleeping behaviors through GABAA receptor Cl- channel activation. Biomol. Ther., 16, 328–335 (2008).

    Article  CAS  Google Scholar 

  • Ma, Y., Ma, H., Eun, J. S., Nam, S. Y., Kim, Y. B., Hong, J. T., Lee, M. K., and Oh, K. W., Methanol extract of Longanae Arillus augments pentobarbital-induced sleep behaviors through the modification of GABAergic systems. J. Ethnopharmacol., 122, 245–250 (2009).

    Article  PubMed  Google Scholar 

  • Macdonald, R. L. and Olsen, R. W., GABAA receptor channels. Annu. Rev. Neurosci., 17, 569–602 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Marder, M. and Paladini, A. C., GABA(A)-receptor ligands of flavonoid structure. Curr. Top. Med. Chem., 2, 853–867 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Martinez, A. L., Dominguez, F., Orozco, S., Chavez, M., Salgado, H., Gonzalez, M., and Gonzalez-Trujano, M. E., Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice. J. Ethnopharmacol., 106, 250–255 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Möhler, H., Fritschy, J. M., and Rudolph, U., A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther., 300, 2–8 (2002).

    Article  PubMed  Google Scholar 

  • Nazaruk, J. and Jakoniuk, P., Flavonoid composition and antimicrobial activity of Cirsium rivulare (Jacq.) All. flowers. J. Ethnopharmacol., 102, 208–212 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ohayon, M. M., Methodology of a study on insomnia in the general population. Encephale, 28, 217–226 (2002).

    PubMed  CAS  Google Scholar 

  • Park, J. C., Lee, J. H., and Choi, J. S., A flavone diglycoside from Cirsium japonicum var. ussuriense. Phytochemistry, 39, 261–262 (1995).

    Article  CAS  Google Scholar 

  • Rudolph, U., Crestani, F., and Möhler, H., GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol. Sci., 22, 188–194 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, U. and Möhler, H., GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr. Opin. Pharmacol., 6, 18–23 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Segal, D. S. and Kuczenski, R., Tyrosine hydroxylase activity: regional and subcellular distribution in the brain. Brain Res., 68, 261–266 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Shukla, S. and Gupta, S., Apigenin: a promising molecule for cancer prevention. Pharm. Res., 27, 962–978 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Tillakaratne, N. J. K., Medina-Kauwe, L., and Gibson, K. M., Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp. Biochem. Physiol. A Physiol., 112, 247–263 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Tobler, I., Kopp, C., Deboer, T., and Rudolph, U., Diazepam-induced changes in sleep: role of the alpha 1 GABA(A) receptor subtype. Proc. Natl. Acad. Sci. U. S. A., 98, 6464–6469 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Viola, H., Wasowski, C., Levi De Stein, M., Wolfman, C., Silveira, R., Dajas, F., Medina, J. H., and Paladini, A. C., Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med., 61, 213–216 (1995).

    Article  PubMed  CAS  Google Scholar 

  • West, M. R. and Molloy, C. R., A microplate assay measuring chloride ion channel activity. Anal. Biochem., 241, 51–58 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Wolfman, C., Viola, H., Marder, M., Wasowski, C., Ardenghi, P., Izquierdo, I., Paladini, A. C., and Medina, J. H., Anxioselective properties of 6,3′-dinitroflavone, a high-affinity benzodiazepine receptor ligand. Eur. J. Pharmacol., 318, 23–30 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Yang, C. S., Landau, J. M., Huang, M. T., and Newmark, H. L., Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr., 21, 381–406 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S. and Baker, R. C., Effects of inhalation anesthetics of Kainate-induced glutamate release from cerebellar granule cells. Life Sci., 58, 1359–1366 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Wan Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JW., Kim, CS., Hu, Z. et al. Enhancement of pentobarbital-induced sleep by apigenin through chloride ion channel activation. Arch. Pharm. Res. 35, 367–373 (2012). https://doi.org/10.1007/s12272-012-0218-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0218-4

Key words

Navigation