Skip to main content

Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications

Abstract

Mesenchymal stem cells (MSCs) are adult stem cells that can be isolated from most adult tissues, including bone marrow, adipose, liver, amniotic fluid, lung, skeletal muscle and kidney. The term MSC is currently being used to represent both mesenchymal stem cells and multipotent mesenchymal stromal cells. Numerous reports on systemic administration of MSCs leading to functional improvements based on the paradigm of engraftment and differentiation have been published. However, it is not only difficult to demonstrate extensive engraftment of cells, but also no convincing clinical results have been generated from phase 3 trials as of yet and prolonged responses to therapy have been noted after identification of MSCs had discontinued. It is now clear that there is another mechanism by which MSCs exert their reparative benefits. Recently, MSCs have been shown to possess immunomodulatory properties. These include suppression of T cell proliferation, influencing dendritic cell maturation and function, suppression of B cell proliferation and terminal differentiation, and immune modulation of other immune cells such as NK cells and macrophages. In terms of the clinical applications of MSCs, they are being tested in four main areas: tissue regeneration for cartilage, bone, muscle, tendon and neuronal cells; as cell vehicles for gene therapy; enhancement of hematopoietic stem cell engraftment; and treatment of immune diseases such as graft-versus-host disease, rheumatoid arthritis, experimental autoimmune encephalomyelitis, sepsis, acute pancreatitis and multiple sclerosis. In this review, the mechanisms of immunomodulatory effects of MSCs and examples of animal and clinical uses of their immunomodulatory effects are described.

This is a preview of subscription content, access via your institution.

References

  1. Aggarwal, S., and Pittenger, M. F., Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822 (2005).

    PubMed  Article  CAS  Google Scholar 

  2. Assis, A. C., Carvalho, J. L., Jacoby, B. A., Ferreira, R. L., Castanheira, P., Diniz, S. O., Cardoso, V. N., Goes, A. M., and Ferreira, A. J., Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant., 19, 219–230 (2010).

    PubMed  Article  Google Scholar 

  3. Augello, A., Tasso, R., Negrini, S.M., Cancedda, R., and Pennesi, G., Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum., 56, 1175–1186 (2007).

    PubMed  Article  CAS  Google Scholar 

  4. Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Devine, S., Ucker, D., Deans, R., Moseley, A., and Hoffman, R., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol., 30, 42–48 (2002).

    PubMed  Article  Google Scholar 

  5. Belladonna, M. L., Grohmann, U., Guidetti, P., Volpi, C., Bianchi, R., Fioretti, M. C., Schwarcz, R., Fallarino, F., and Puccetti, P., Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J. Immunol., 177, 130–137 (2006).

    PubMed  CAS  Google Scholar 

  6. Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G. L., Pistoia, V., and Uccelli, A., Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372 (2006).

    PubMed  Article  CAS  Google Scholar 

  7. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S., and Gianni, A. M., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843 (2002).

    PubMed  Article  Google Scholar 

  8. Djouad, F., Fritz, V., Apparailly, F., Louis-Plence, P., Bony, C., Sany, J., Jorgensen, C., and Noel, D., Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum., 52, 1595–1603 (2005).

    PubMed  Article  CAS  Google Scholar 

  9. Duijvestein, M., Vos, A. C., Roelofs, H., Wildenberg, M. E., Wendrich, B. B., Verspaget, H. W., Kooy-Winkelaar, E. M., Koning, F., Zwaginga, J. J., Fidder, H. H., Verhaar, A. P., Fibbe, W. E., van den Brink, G. R., and Hommes, D. W., Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut, 59, 1662–1669 (2010).

    PubMed  Article  Google Scholar 

  10. English, K., French, A., and Wood, K. J., Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell, 7, 431–442 (2010).

    PubMed  Article  CAS  Google Scholar 

  11. Friedenstein, A. J., Chailakhyan, R. K., and Gerasimov, U. V., Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet., 20, 263–272 (1987).

    PubMed  CAS  Google Scholar 

  12. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., Panasuk, A. F., Rudakowa, S. F., Luria, E. A., and Ruadkow, I. A., Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol., 2, 83–92 (1974).

    PubMed  CAS  Google Scholar 

  13. Frumento, G., Rotondo, R., Tonetti, M., Damonte, G., Benatti, U., and Ferrara, G. B., Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med., 196, 459–468 (2002).

    PubMed  Article  CAS  Google Scholar 

  14. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., and Dazzi, F., Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105, 2821–2827 (2005).

    PubMed  Article  CAS  Google Scholar 

  15. Gnecchi, M., and Melo, L. G., Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol., 482, 281–294 (2009).

    PubMed  Article  CAS  Google Scholar 

  16. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Deans, R. J., Krause, D. S., and Keating, A., Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7, 393–395 (2005).

    PubMed  Article  CAS  Google Scholar 

  17. Jiang, R., Han, Z., Zhuo, G., Qu, X., Li, X., Wang, X., Shao, Y., Yang, S., and Han, Z. C., Transplantation of placentaderived mesenchymal stem cells in type 2 diabetes: a pilot study. Front. Med., 5, 94–100 (2011).

    PubMed  Article  Google Scholar 

  18. Joyner, C. J., Bennett, A., and Triffitt, J. T., Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies. Bone, 21, 1–6 (1997).

    PubMed  Article  CAS  Google Scholar 

  19. Jung, K. H., Song, S. U., Yi, T., Jeon, M. S., Hong, S. W., Zheng, H. M., Lee, H. S., Choi, M. J., Lee, D. H., and Hong, S. S., Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology, 140, 998–1008 (2011).

    PubMed  Article  CAS  Google Scholar 

  20. Kebriaei, P., Isola, L., Bahceci, E., Holland, K., Rowley, S., McGuirk, J., Devetten, M., Jansen, J., Herzig, R., Schuster, M., Monroy, R., and Uberti, J., Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol. Blood Marrow Transplant., 15, 804–811 (2009).

    PubMed  Article  CAS  Google Scholar 

  21. Klyushnenkova, E., Mosca, J. D., Zernetkina, V., Majumdar, M. K., Beggs, K. J., Simonetti, D. W., Deans, R. J., and McIntosh, K. R., T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci., 12, 47–57 (2005).

    PubMed  Article  CAS  Google Scholar 

  22. Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., Santarlasci, V., Mazzinghi, B., Pizzolo, G., Vinante, F., Romagnani, P., Maggi, E., Romagnani, S., and Annunziato, F., Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24, 386–398 (2006).

    PubMed  Article  CAS  Google Scholar 

  23. Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., Lanino, E., Sundberg, B., Bernardo, M. E., Remberger, M., Dini, G., Egeler, R. M., Bacigalupo, A., Fibbe, W., and Ringden, O., Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versushost disease: a phase II study. Lancet, 371, 1579–1586 (2008).

    PubMed  Article  Google Scholar 

  24. Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M., and Ringden, O., Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363, 1439–1441 (2004).

    PubMed  Article  Google Scholar 

  25. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S. E., and Ringden, O., Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol., 57, 11–20 (2003a).

    PubMed  Article  Google Scholar 

  26. Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., and Ringden, O., HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol., 31, 890–896 (2003b).

    PubMed  Article  Google Scholar 

  27. Lim, J. H., Lee, M. H., Yi, H. G., Kim, C. S., Kim, J. H., and Song, S. U., Mesenchymal stromal cells for steroid-refractory acute graft-versus-host disease: a report of two cases. Int. J. Hematol., 92, 204–207 (2010).

    PubMed  Article  Google Scholar 

  28. Maccario, R., Podesta, M., Moretta, A., Cometa, A., Comoli, P., Montagna, D., Daudt, L., Ibatici, A., Piaggio, G., Pozzi, S., Frassoni, F., and Locatelli, F., Interaction of human mesenchymal stem cells with cells involved in alloantigen- specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 90, 516–525 (2005).

    PubMed  CAS  Google Scholar 

  29. Maitra, B., Szekely, E., Gjini, K., Laughlin, M. J., Dennis, J., Haynesworth, S. E., and Koc, O. N., Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant., 33, 597–604 (2004).

    PubMed  Article  CAS  Google Scholar 

  30. Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., and Dilloo, D., Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenasemediated tryptophan degradation. Blood, 103, 4619–4621 (2004).

    PubMed  Article  CAS  Google Scholar 

  31. Miller, R. H., Bai, L., Lennon, D. P., and Caplan, A. I., The potential of mesenchymal stem cells for neural repair. Discov. Med., 9, 236–242 (2010).

    PubMed  Google Scholar 

  32. Mills, C. R., Osiris therapeutics announces preliminary results for prochymal phase III GVHD trials. (http://investor.osiris.com/releasedetail.dfm?releaseID=407404) (2009).

  33. Munn, D. H., Sharma, M. D., Lee, J. R., Jhaver, K. G., Johnson, T. S., Keskin, D. B., Marshall, B., Chandler, P., Antonia, S. J., Burgess, R., Slingluff, C. L., Jr., and Mellor, A. L., Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science, 297, 1867–1870 (2002).

    PubMed  Article  CAS  Google Scholar 

  34. Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R., and Fibbe, W. E., Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocytederived dendritic cells. J. Immunol., 177, 2080–2087 (2006).

    PubMed  CAS  Google Scholar 

  35. Ortiz, L. A., Gambelli, F., McBride, C., Gaupp, D., Baddoo, M., Kaminski, N., and Phinney, D. G., Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. U. S. A., 100, 8407–8411 (2003).

    PubMed  Article  CAS  Google Scholar 

  36. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147 (1999).

    PubMed  Article  CAS  Google Scholar 

  37. Poggi, A., Prevosto, C., Massaro, A. M., Negrini, S., Urbani, S., Pierri, I., Saccardi, R., Gobbi, M., and Zocchi, M. R., Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J. Immunol., 175, 6352–6360 (2005).

    PubMed  CAS  Google Scholar 

  38. Prockop, D. J., Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74 (1997).

    PubMed  Article  CAS  Google Scholar 

  39. Prockop, D. J., Kota, D. J., Bazhanov, N., and Reger, R. L., Evolving paradigms for repair of tissues by adult stem/ progenitor cells (MSCs). J. Cell. Mol. Med., 14, 2190–2199 (2010).

    PubMed  Article  Google Scholar 

  40. Qian, H., Yang, H., Xu, W., Yan, Y., Chen, Q., Zhu, W., Cao, H., Yin, Q., Zhou, H., Mao, F., and Chen, Y., Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. Int. J. Mol. Med., 22, 325–332 (2008).

    PubMed  Google Scholar 

  41. Ramasamy, R., Fazekasova, H., Lam, E. W., Soeiro, I., Lombardi, G., and Dazzi, F., Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 83, 71–76 (2007).

    PubMed  Article  Google Scholar 

  42. Rasmusson, I., Ringden, O., Sundberg, B., and Le Blanc, K., Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76, 1208–1213 (2003).

    PubMed  Article  Google Scholar 

  43. Reiser, J., Zhang, X. Y., Hemenway, C. S., Mondal, D., Pradhan, L., and La Russa, V. F., Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin. Biol. Ther., 5, 1571–1584 (2005).

    PubMed  Article  CAS  Google Scholar 

  44. Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., Zhao, R. C., and Shi, Y., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2, 141–150 (2008).

    PubMed  Article  CAS  Google Scholar 

  45. Ringden, O., Uzunel, M., Rasmusson, I., Remberger, M., Sundberg, B., Lonnies, H., Marschall, H. U., Dlugosz, A., Szakos, A., Hassan, Z., Omazic, B., Aschan, J., Barkholt, L., and Le Blanc, K., Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81, 1390–1397 (2006).

    PubMed  Article  Google Scholar 

  46. Rosenzweig, A., Cardiac cell therapy-mixed results from mixed cells. N. Engl. J. Med., 355, 1274–1277 (2006).

    PubMed  Article  CAS  Google Scholar 

  47. Sage, E. K., Loebinger, M. R., Polak, J., and Janes, S. M., The Role of Bone Marrow-derived Stem Cells in Lung Regeneration and Repair. StemBook, Harvard Stem Cell Institute, Cambridge, (2008).

    Google Scholar 

  48. Schipani, E., and Kornberg, H. M., Adult Mesenchymal Stem Cells. StemBook, Harvard Stem Cell Institute, Cambridge, (2008).

    Google Scholar 

  49. Song, S. U., Kim, C. S., Yoon, S. P., Kim, S. K., Lee, M. H., Kang, J. S., Choi, G. S., Moon, S. H., Choi, M. S., Cho, Y. K., and Son, B. K., Variations of clonal marrow stem cell lines established from human bone marrow in surface epitopes, differentiation potential, gene expression, and cytokine secretion. Stem Cells Dev., 17, 451–461 (2008).

    PubMed  Article  CAS  Google Scholar 

  50. Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., and Papamichail, M., Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24, 74–85 (2006).

    PubMed  Article  Google Scholar 

  51. Spagnoli, A., Longobardi, L., and O’Rear, L., Cartilage disorders: potential therapeutic use of mesenchymal stem cells. Endocr. Dev., 9, 17–30 (2005).

    PubMed  Article  CAS  Google Scholar 

  52. Tian, H., Bharadwaj, S., Liu, Y., Ma, P. X., Atala, A., and Zhang, Y., Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng. Part A, 16, 1769–1779 (2010).

    PubMed  Article  CAS  Google Scholar 

  53. Tolar, J., Le Blanc, K., Keating, A., and Blazar, B. R., Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells, 28, 1446–1455 (2010).

    PubMed  Article  Google Scholar 

  54. Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., and Guinan, E. C., Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75, 389–397 (2003).

    PubMed  Article  CAS  Google Scholar 

  55. Uccelli, A., Moretta, L., and Pistoia, V., Mesenchymal stem cells in health and disease. Nat. Rev. Immunol., 8, 726–736 (2008).

    PubMed  Article  CAS  Google Scholar 

  56. Waller, E. K., Olweus, J., Lund-Johansen, F., Huang, S., Nguyen, M., Guo, G. R., and Terstappen, L., The “common stem cell” hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood, 85, 2422–2435 (1995).

    PubMed  CAS  Google Scholar 

  57. Yamout, B., Hourani, R., Salti, H., Barada, W., El-Hajj, T., Al-Kutoubi, A., Herlopian, A., Baz, E. K., Mahfouz, R., Khalil-Hamdan, R., Kreidieh, N. M., El-Sabban, M., and Bazarbachi, A., Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J. Neuroimmunol., 227, 185–189 (2010).

    PubMed  Article  CAS  Google Scholar 

  58. Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., Mancardi, G., and Uccelli, A., Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761 (2005).

    PubMed  Article  CAS  Google Scholar 

  59. Zhao, D. C., Lei, J. X., Chen, R., Yu, W.H., Zhang, X. M., Li, S. N., and Xiang, P., Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J. Gastroenterol., 11, 3431–3440 (2005).

    PubMed  Google Scholar 

  60. Zohar, R., Sodek, J., and McCulloch, C. A., Characterization of stromal progenitor cells enriched by flow cytometry. Blood, 90, 3471–3481 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sun U. Song.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yi, T., Song, S.U. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch. Pharm. Res. 35, 213–221 (2012). https://doi.org/10.1007/s12272-012-0202-z

Download citation

Key words

  • Mesenchymal stem cell
  • Immunomodulation
  • Clinical application
  • Allogeneic stem cell
  • Therapeutic product
  • Immune disease