Archives of Pharmacal Research

, Volume 35, Issue 1, pp 93–100 | Cite as

Effect of magnet implant on iron biodistribution of Fe@C nanoparticles in the mouse

  • Elvira EscribanoEmail author
  • Rodrigo Fernández-Pacheco
  • J. Gabriel Valdivia
  • M. Ricardo Ibarra
  • Clara Marquina
  • Josep Queralt
Research Article Drug Development


The in vivo biodistribution of Fe@C nanoparticles (NP) was tested in mice bearing an inflammatory focus induced by injecting carrageenan into an air pouch previously formed on their back. The animals were intravenously injected NP with a high (60 mg/kg) or a low iron dose (6 mg/kg) and sacrificed 2 h later. Blood and organ samples (liver, spleen, lung, and kidney) were obtained; washed exudates were also collected. Iron concentration in plasma, blood cells, organs, and exudates was determined by flameless atomic-absorption-spectroscopy after digestion of organic material. Pouch exudate volume increased in all groups of mice with experimental inflammation. After i.v. administration of the high and low dose of NP, iron in exudate increased by 83.3% and 92.2%, respectively. A similar increase in hepatic iron appeared after the high dose (78%), but no increase appeared after the low dose. When the magnet was present, a 157% and 119% increase of iron in exudate appeared after both doses of NPs, but only the high dose of NP increased iron liver (60%). The presence of a magnetic field in the pouch favored selective biodistribution of NP in the inflammatory focus. These results indicate that mice with an inflammatory compartment are suitable for primary screening of different NP types. They also show that selective biodistribution is greater when a low dose of NP was used and that distribution in the target organ was increased by the magnetic field.

Key words

Magnetic nanoparticles Iron biodistribution Inflammatory focus Magnet implant Mouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, K. A., Drummond, J. L., Graber, T., and BeGole, E., Magnetic strength and corrosion of rare earth magnets. Am. J. Orthod. Dentofacial. Orthop., 130, 275.e11–275.e15 (2006).CrossRefGoogle Scholar
  2. Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R., and Santamaría, J., Magnetic nanoparticles for drug delivery. Nanotoday, 2, 22–32 (2007).Google Scholar
  3. Azarmi, S., Roa, W. H., and Löbenberg, R., Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Del. Rev., 60, 863–875 (2008).CrossRefGoogle Scholar
  4. Barry, S. E., Challenges in the development of magnetic particles for therapeutic applications. Int. J. Hyperthermia, 24, 451–466 (2008).PubMedCrossRefGoogle Scholar
  5. Butoescu, N., Seemayer, C. A., Foti, M., Jordan, O., and Doelker, E., Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials, 30, 1772–1780 (2009).PubMedCrossRefGoogle Scholar
  6. De Jong, W. H. and Borm, P. J. A.., Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed., 3, 133–149 (2008).CrossRefGoogle Scholar
  7. De Jong, W. H., Hagens, W. I., Krystek, P., Burger, M. C., Sips, A. J. A. M., and Geertsma, R. E., Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 19, 1912–1919 (2008).CrossRefGoogle Scholar
  8. Dobson, J., Magnetic Nanoparticles for drug delivery. Drug Dev. Res., 67, 55–60 (2006).CrossRefGoogle Scholar
  9. Evans, R. D. and McDonald, F., Effect of corrosion products (neodymium iron boron) on oral fibroblast proliferation. J. Appl. Biomater., 6, 199–202 (1995).PubMedCrossRefGoogle Scholar
  10. Fernández-Pacheco, R., Marquina, C., Valdivia, J. G., Gutiérrez, M., Romero, M. S., Cornudella, R., Laborda, A., Viloria, A., Higuera, T., García, A., García de Jalón, J. A., and Ibarra, M. R., Magnetic nanoparticles for local drug delivery using magnetic implants. J. Magn. Magn. Mater., 311, 318–322 (2007).CrossRefGoogle Scholar
  11. Gamarra, L. F., Pontuschka, W. M., Amaro, E., Jr., Costa-Filho, A. J., Brito, G. E. S., Vieira, E. D., Carneiro, S. M., Escriba, D. M., Falleiros, A. M. F., and Salvador, V. L. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study. Mat. Sci. Engin C, 28, 519–525 (2008).CrossRefGoogle Scholar
  12. Goya, G. F, Grazú, V., and Ibarra, M. R., Magnetic Nanoparticles for Cancer Therapy. Curr. Nanosci., 4, 1–16 (2008).CrossRefGoogle Scholar
  13. Häfeli, U.O. Magnetically modulated therapeutic systems. Int. J. Pharm., 277, 19–24 (2004).PubMedCrossRefGoogle Scholar
  14. Ito, A., Shinkai, M., Honda, H., and Kobayashi, T., Medical Application of Funcionalized Magnetic Nanoparticles. J. Biosci. Bioeng., 100, 1–11 (2005).PubMedCrossRefGoogle Scholar
  15. Kim, J. S., Yoon, T.-J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., Lee, K. H., Park, S. B, Lee, J. K., and Cho, M. H., Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological. Sci., 89, 338–347 (2006).CrossRefGoogle Scholar
  16. Kreuter, J., Täuber U., and Illi V., Distribution and elimination of poly(methyl-2-14C-methacrylate) nanoparticle radioactivity after injection in rats and mice. J. Pharm. Sci., 68, 1443–1447 (2006).CrossRefGoogle Scholar
  17. Ma, H.-L., Qi, X.-R., Ding, W.-X., Maitani, Y., and Nagai, T., Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. J. Biomed. Mat. Res., 84, 598–606 (2008a).CrossRefGoogle Scholar
  18. Ma, H. L., Xu, Y. F., Qi, X. R., Maitani, Y., and Nagai, T., Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int. J. Pharm., 354, 217–226 (2008b).PubMedCrossRefGoogle Scholar
  19. Malaiya, A. and Vyas, S. P., Peparation and characterization of indomethacin magnetic nanoparticles. J. Microencapsul., 5, 243–253 (1988).PubMedCrossRefGoogle Scholar
  20. Mc Bain, S. C., Yiu, H. H., and Dobson, J., Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed., 3, 169–180 (2008).Google Scholar
  21. Mitruka, B. M. and Rawnsley, H. M., Clinical Biochemical and hematological reference values in normal experimental animals. Masson Publishing USA, Inc, New York, p. 115, (1997).Google Scholar
  22. Noar, J. H., Wahab, A., Evans, R. D., and Wojcik, A. G., The durability of parylene coatings on neodymium-iron-boron magnets. Eur. J. Orthod., 21, 685–693 (1999).PubMedCrossRefGoogle Scholar
  23. Romano, M., Faggioni, R., Sironi, M., Sacco, S., Echtenacher, B., Di Santo, E., Salmona, M., and Ghezzi, P., Carrageenaninduced acute inflammation in the mouse air pouch synovial model. Role of tumor necrosis factor. Mediat. Inflamm., 6, 32–38 (1997).CrossRefGoogle Scholar
  24. Soler, M. A., Báo, S. N., Alcântara, G. B., Tibúrcio, V. H., Paludo, G. R., Santana, J. F., Guedes, M. H., Lima, E. C. D., Lacava, Z. G. M., and Morais, P. C., Interaction of Erythrocytes with Magnetic Nanoparticles. J. Nanosci. Nanotechnol., 7, 1069–1071 (2007).PubMedCrossRefGoogle Scholar
  25. Sonavane, G., Tomoda, K., and Makino, K., Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces, 66, 274–280 (2008).PubMedCrossRefGoogle Scholar
  26. Van Beers, B. E., Sempoux, C., Materne, R., Delos, M., and Smith, A. M., Biodistribution of ultrasmall iron oxide particles in the rat liver. J. Mag. Reson. Imaging., 13, 594–599 (2001).CrossRefGoogle Scholar
  27. Vyas, S. P. and Malaiya, A., In vivo characterization of indomethacin magnetic polymethyl methacrilate nanoparticles. J. Microencapsul., 5, 243–253 (1989).Google Scholar
  28. Wilson, M., Patel, H., Lpendema, H., Noar, J. H., Hunt, N. P., and Mordan, N. J., Corrosion of the intra-oral magnets by multi-species biofilms in the presence and absence of sucrose. Biomaterials, 18, 53–57 (1997).PubMedCrossRefGoogle Scholar
  29. Yellen, B. B., Forbes, Z. G., Halverson, D. S., Fridman, G., Barbee, K. A., Chorny, M., Levy, R., and Friedman, G., Targeted drug delivery to magnetic implants for therapeutic applications. J. Magn. Magn. Mater., 293, 647–654 (2005).CrossRefGoogle Scholar
  30. Zavisova, V., Koneracka, M., Strbak, O., Tomasovicova, N., Kopcansky, P., Timko, M., and Vavra, I., Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles. J. Mag. Magn. Mat., 311, 379–382 (2007).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Elvira Escribano
    • 1
    Email author
  • Rodrigo Fernández-Pacheco
    • 3
  • J. Gabriel Valdivia
    • 3
  • M. Ricardo Ibarra
    • 3
    • 4
  • Clara Marquina
    • 4
  • Josep Queralt
    • 2
  1. 1.Departament de Farmàcia i Tecnologia FarmacèuticaUnitat de Biofarmàcia i FarmacocinèticaBarcelonaSpain
  2. 2.Departament de Fisiologia. Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Instituto de Nanociencia de Aragón (INA)Universidad de ZaragozaZaragozaSpain
  4. 4.Instituto de Ciencia de Materiales de Aragón & Dpto, Física de la Materia CondensadaCSIC-Universidad de ZaragozaZaragozaSpain

Personalised recommendations