Skip to main content
Log in

Myocardial postconditioning: Next step to cardioprotection

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Myocardial ischemia is a condition in which lack of blood flow to the cardiac muscle occurs resulting in deficient oxygen and nutrient supply to the heart. The restoration of blood flow to an organ or tissue is termed reperfusion. Brief episodes of ischemia and reperfusion given after prolonged ischemia and at the onset of reperfusion denotes postconditioning. Myocardial postconditioning is a phenomenon in which myocardium from lethal ischemia-reperfusion injury is protected. However, numerous experimental studies reveal that the cardioprotective effects of postconditioning are suppressed in various pathological states. This review critically discusses the mechanisms involved in the cardioprotective effects of postconditioning and factors affecting the cardioprotective potential of myocardial postconditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aktan, A. O. and Yalcin, A. S. Ischemia-reperfusion injury, reactive oxygenmetabolites and the surgeon. Turk. J. Med. Sci., 28, 1–5 (1998).

    Google Scholar 

  • Andreka, G., Vertesaljai, M., Szantho, G., Font, G., Piroth, Z., Fontos, G., Juhasz, E. D., Szekely, L., Szelid, Z., Turner, M. S., Ashrafian, H., Frenneaux, M. P., and Andreka, P., Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart, 93, 749–752 (2007).

    Article  PubMed  Google Scholar 

  • Burley, D. S., Ferdinandy, P. and Baxter, G. F. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signalling. Br. J. Pharmacol., 152, 855–869 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Burley, D. S. and Baxter, G. F., Pharmacological targets revealed by myocardial postconditioning. Curr. Opin. Pharmacol., 9, 177–188 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Cai, M., Li, Y., Xu, Y., Swartz, H. M., Chen, C. L., Chen, Y. R., and He, G., Endothelial NOS Activity and Myocardial Oxygen Metabolism Define the Salvageable Ischemic Time Window for Ischemic Postconditioning. Am. J. Physiol. Heart Circ. Physiol., 300, H1069–H1077 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Li, T., and Zhang, B. Morphine postconditioning protects against reperfusion injury in the isolated rat hearts. J. Surg. Res., 145, 287–294 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Chiari, P. C., Bienengraeber, M. W., Pagel, P. S., Krolikowski, J. G., Kersten, J. R., and Warltier, D. C., Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology, 102, 102–109 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Collard, C. D. and Gelman, S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology, 94, 1133–1138 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Couvreur, N., Tissier, R., Pons, S., Chenoune, M., Waintraub, X., Berdeaux, A., and Ghaleh, B., The ceiling effect of pharmacological postconditioning with the phytoestrogen genistein is reversed by the GSK3beta inhibitor SB 216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole- 2,5-dione] through mitochondrial ATP-dependent potassium channel opening. J. Pharmacol. Exp. Ther., 329, 1134–1141 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Dai, A. L., Fan, L. H., Zhang, F. J., Yang, M. J., Yu, J., Wang, J. K., Fang, T., Chen, G., Yu, L. N., and Yan, M. Effects of sevoflurane preconditioning and postconditioning on rat myocardial stunning in ischemic reperfusion injury. J. Zhejiang. Univ. Sci. B, 11, 267–274 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Darling, C. E., Jiang, R., Maynard, M., Whittaker, P., Vinten-Johansen, J., and Przyklenk, K., Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am. J. Physiol. Heart Circ. Physiol., 289, H1618–H1626 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Di Napoli, P., Taccardi, A. A., De Caterina, R., and Barsotti, A., Pathophysiology of ischemia-reperfusion injury: experimental data. Ital. Heart J., 3, 24S–28S (2002).

    PubMed  Google Scholar 

  • Downey, J. M. and Cohen, M. V., We think we see a pattern emerging here. Circulation, 111, 120–121 (2005).

    Article  PubMed  Google Scholar 

  • Dreiseitel, A., Schreier, P., Oehme, A., Locher, S., Rogler, G., Piberger, H., Hajak, G., and Sand, P. G., Anthocyanins and anthocyanidins are poor inhibitors of CYP2D6. Methods Find. Exp. Clin. Pharmacol., 31, 3–9 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Lucchinetti, E., Ahuja, P., Pasch, T., Perriard, J. C., and Zaugg, M., Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta. Anesthesiology, 103, 987–995 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Fischer, G., Lucchinetti, E., Zhu, M., Bestmann, L., Jegger, D., Arras, M., Pasch, T., Perriard, J. C., Schaub, M. C., and Zaugg, M., Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling. Anesthesiology, 104, 1004–1014 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Galagudza, M., Kurapeev, D., Minasian, S., Valen, G., and Vaage, J., Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur. J. Cardiothorac. Surg., 25, 1006–1010 (2004).

    Article  PubMed  Google Scholar 

  • Granfeldt, A., Lefer, D. J., and Vinten-Johansen, J., Protective ischaemia in patients: preconditioning and postconditioning. Cardiovasc. Res., 83, 234–246 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Gritsopoulos, G., Iliodromitis, E. K., Zoga, A., Farmakis, D., Demerouti, E., Papalois, A., Paraskevaidis, I. A., and Kremastinos, D. T., Remote postconditioning is more potent than classic postconditioning in reducing the infarct size in anesthetized rabbits.. Cardiovasc. Drugs Ther., 23, 193–198 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Hassouna, A., Loubani, M., Matata, B. M., Fowler, A., Standen, N. B., and Galiñanes, M., Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc. Res., 69, 450–458 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Hausenloy, D. J., Tsang, A. and Yellon, D. M., The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc. Med., 15, 69–75 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Hausenloy, D. J. and Yellon, D. M., Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc. Res., 70, 240–253 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Hausenloy, D. J., Signalling pathways in ischaemic postconditioning. Thromb. Haemost., 101, 626–634 (2009).

    PubMed  CAS  Google Scholar 

  • Hiroyuki, Y., Masayoshi, O., Masumi, I. T., Kazuhide, O., and Yukio, M. Hypercholesterolemia attenuates cardioprotective effect of postconditioning in association with endothelial nitric oxide dysfunction in rat acute myocardial infarction. Circ. J., 70, 401(2006).

    Google Scholar 

  • Inamura, Y., Miyamae, M., Sugioka, S., Domae, N., and Kotani, J., Sevoflurane postconditioning prevents activation of caspase 3 and 9 through antiapoptotic signaling after myocardial ischemia-reperfusion. J. Anesth., 24, 215–224 (2010).

    Article  PubMed  Google Scholar 

  • Ivanes, F., Mewton, N., Rioufol, G., Piot, C., Elbaz, M., Revel, D., Croisille, P., and Ovize, M., Cardioprotection in the clinical setting. Cardiovasc. Drugs Ther., 24, 281–287 (2010).

    Article  PubMed  Google Scholar 

  • Kaur, S., Jaggi, A. S., and Singh, N., Molecular aspects of ischaemic postconditioning. Fundam. Clin. Pharmacol., 23, 521–536 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Kerendi, F., Kin, H., Halkos, M. E., Jiang, R., Zatta, A. J., Zhao, Z. Q., Guyton, R. A., and Vinten-Johansen, J., Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res. Cardiol., 100, 404–412 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kin, H., Wang, N. P., Mykytenko, J., Reeves, J., Deneve, J., Jiang, R., Zatta, A. J., Guyton, R. A., Vinten-Johansen, J., and Zhao, ZQ., Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappaB translocation and TNFalpha release. Shock, 29, 761–768 (2007).

    Google Scholar 

  • Kloner, R. A., Dow, J., and Bhandari, A., Postconditioning markedly attenuates ventricular arrhythmias after ischemiareperfusion. J. Cardiovasc. Pharmacol. Ther., 11, 55–63 (2006).

    Article  PubMed  Google Scholar 

  • Kupai, K., Csonka, C., Fekete, V., Odendaal, L., van Rooyen, J., Marais de, W., Csont, T., and Ferdinandy, P., Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am. J. Physiol. Heart Circ. Physiol., 297, H1729–H1735 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Lange, M., Lotz, C. A., Redel, A., Roewer, N., and Kehl, F., Desflurane-induced postconditioning is mediated by beta-1 and beta-2 adrenergic signalling. Anesthesiology, 107, A755 (2007).

    Google Scholar 

  • Li, C. M., Zhang, X. H., Ma, X. J., and Luo, M., Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scand. Cardiovasc. J., 40, 312–317 (2006).

    Article  PubMed  Google Scholar 

  • Li, D. L., Liu, B. H., Sun, L., Zhao, M., He, X., Yu, X. J., and Zang, W. J., Alterations of muscarinic acetylcholine receptors- 2, 4 and á7-nicotinic acetylcholine receptor expression after ischaemia/reperfusion in the rat isolated heart. Clin. Exp. Pharmacol. Physiol., 37, 1114–1119 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Ling Ling, J., Wong, G. T., Yao, L., Xia, Z., and Irwin, M. G., Remote pharmacological post-conditioning by intrathecal morphine: cardiac protection from spinal opioid receptor activation. Acta Anaesthesiol. Scand., 54, 1097–1104 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Wu, X. F., Zhang, W. Z., Sun, Y. X., and Cai, S. L., Remote postconditioning by brief renal ischemia and reperfusion reduces acute myocardial ischemia and reperfusion induced myocardial apoptosis in rabbits. Zhonghua Xin Xue Guan Bing Za Zhi, 35, 757–760 (2007).

    PubMed  CAS  Google Scholar 

  • Ma, X. J., Zhang, X. H., Luo, M., Li, C. M., and Shao, J. H., Effects of preconditioning and postconditioning on emergency percutaneous coronary intervention in patients with acute myocardial infarction. Zhonghua Yi Xue Za Zhi, 87, 114–117 (2007).

    PubMed  CAS  Google Scholar 

  • Matsuo, H., Watanabe, S., Segawa, T., Yasuda, S., Hirose, T., Iwama, M., Tanaka, S., Yamaki, T., Matsuno, Y., Tomita, M., Minatoguchi, S., and Fujiwara, H., Evidence of pharmacologic preconditioning during PTCA by intravenous pretreatment with ATP-sensitive K+ channel opener nicorandil. Eur. Heart J., 24, 1296–1303 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Obal, D., Scharbatke, H., Barthel, H., Preckel, B., Müllenheim, J., and Schlack, W., Cardioprotection against reperfusion injury is maximal with only two minutes of sevoflurane administration in rats. Can. J. Anaesth., 50, 940–945 (2003).

    Article  PubMed  Google Scholar 

  • Penna, C., Mancardi, D., Rastaldo, R., Losano, G., and Pagliaro, P., Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc. Res., 75, 168–177 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Penna, C., Mognetti, B., Tullio, F., Gattullo, D., Mancardi, D., Pagliaro, P., and Alloatti, G., The platelet activating factor triggers preconditioning-like cardioprotective effect via mitochondrial K-ATP channels and redox-sensible signaling. J. Physiol. Pharmacol., 59, 47–54 (2008).

    PubMed  CAS  Google Scholar 

  • Penna, C., Tullio, F., Moro, F., Folino, A., Merlino, A., and Pagliaro, P., Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats. Basic Res. Cardiol., 105, 181–192 (2010).

    Article  PubMed  Google Scholar 

  • Pepine, C. J. and Nichols, W. W., The pathophysiology of chronic ischemic heart disease. Clin. Cardiol., 30, I4–I9 (2007).

    Article  PubMed  Google Scholar 

  • Philipp, S., Yang, X. M., Cui, L., Davis, A. M., Downey, J. M, and Cohen, M. V. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc. Res., 70, 308–314 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Przyklenk, K., Maynard, M., Smith, C. S. and Whittaker, P. Postconditioning Fails to Limit Infarct Size in the Setting of Type-2 and Type-1 Diabetes. Circulation, 116, II_97 (2007).

    Google Scholar 

  • Przyklenk, K., Maynard, M., Darling, C. E., and Whittaker, P., Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J. Am. Coll. Cardiol., 51, 1393–1398 (2008).

    Article  PubMed  Google Scholar 

  • Przyklenk, K., Maynard, M., Greiner, D. L., and Whittaker, P., Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid. Redox Signal., 14, 781–790 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Ramzy, D., Rao, V., and Weisel, R. D., Clinical applicability of preconditioning and postconditioning: the cardiothoracic surgeons’s view. Cardiovasc. Res., 70, 174–180 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Raphael, J., Gozal, Y., Navot, N., and Zuo, Z., Hyperglycemia inhibits anesthetic-induced postconditioning in the rabbit heart via modulation of phosphatidylinositol-3-kinase/Akt and endothelial nitric oxide synthase signaling. J. Cardiovasc. Pharmacol., 55, 348–357 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Rohilla, A. and Balakumar, P., The infarct size-limiting effect of ischemic postconditioning (IPOC) is suppressed in isolated hyperhomocysteinemic (Hhcy) rat hearts: the reasonable role of PKC-delta. Biomed. Pharmacother., 63, 787–791 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Rohilla, A., Singh, G., Singh, M., and Balakumar, P., Possible involvement of PKC-delta in the abrogated cardioprotective potential of ischemic preconditioning in hyperhomocysteinemic rat hearts. Biomed. Pharmacother., 64, 195–202 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Sala-Mercado, J. A., Wider, J., Undyala, V. V., Jahania, S., Yoo, W., Mentzer, R. M., Jr., Gottlieb, R. A., and Przyklenk, K., Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation, 122, S179–S184 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, H., Ogawa, K., Shimizu, M., Mori, C., Takatsuka, H., Okazaki, F., Kawai, M., Taniguchi, I., and Mochizuki, S., The insulin sensitizer pioglitazone improves the deterioration of ischemic preconditioning in type 2 diabetes mellitus rats. Int. Heart J., 48, 623–635 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Bolli, R., Rokosh, G. D., Bi, Q., Dai, S., Shirk, G., and Tang, X. L., The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. Am. J. Physiol. Heart Circ. Physiol., 293, H2557–H2564 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Shim, Y. H., Warltier, D. C., Kersten, J. R., Pagel, P. S., and Pratt, P. F., Isoflurane, but not halothane, postconditions myocardium against infarction in vivo. Anesthesiology, 107, A1328 (2007).

    Google Scholar 

  • Sicard, P., Jacquet, S., Kobayashi, K. S., Flavell, R. A., and Marber, M. S., Pharmacological postconditioning effect of muramyl dipeptide is mediated through RIP2 and TAK1. Cardiovasc. Res., 83, 277–284 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Singh, G., Rohilla, A., Singh, M., and Balakumar, P., Possible role of JAK-2 in attenuated cardioprotective effect of ischemic preconditioning in hyperhomocysteinemic rat hearts. Yakugaku Zasshi, 129, 523–535 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Suleman, N., Opie, L., and Lecour, S., Ischemic preconditioning confers cardioprotection via phosphorylation of STAT-3. J. Mol. Cell. Cardiol., 40, 977 (2006).

    Article  Google Scholar 

  • Sun, H. Y., Wang, N. P., Kerendi, F., Halkos, M., Kin, H., Guyton, R. A., Vinten-Johansen, J., and Zhao, ZQ., Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am. J. Physiol. Heart Circ. Physiol., 288, H1900–H1908 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Tao, R., Kim, S. H., Honbo, N., Karliner, J. S., and Alano, C. C., Minocycline protects cardiac myocytes against simulated ischemia-reperfusion injury by inhibiting poly(ADPribose) polymerase-1. J. Cardiovasc. Pharmacol., 56, 659–668 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Tissier, R., Waintraub, X., Couvreur, N., Gervais, M., Bruneval, P., Mandet, C., and Zini, R., Enriquez B, Berdeaux A, Ghaleh B.. Pharmacological postconditioning with the phytoestrogen genistein. J. Mol. Cell. Cardiol., 42, 79–87 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Tong, G., Sun, Z., Wei, X., Gu, C., Kaye, A. D., Wang, Y., Li, J., Zhang, Q., Guo, H., Yu, S., Yi, D., and Pei, J., U50,488H postconditioning reduces apoptosis after myocardial ischemia and reperfusion. Life Sci., 88, 31–38 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Tsang, A., Hausenloy, D. J., Mocanu, M. M., and Yellon, D. M., Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ. Res., 95, 230–232 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Tsang, A., Hausenloy, D. J., and Yellon, D. M., Myocardial postconditioning: reperfusion injury revisited. Am. J. Physiol. Heart Circ. Physiol., 289, H2–H7 (2005).

    Article  PubMed  CAS  Google Scholar 

  • van Vuuren, D. and Lochner, A., Ischaemic postconditioning: from bench to bedside. Cardiovasc. J. Afr., 19, 311–320 (2008).

    PubMed  Google Scholar 

  • Wang, H. C., Zhang, H. F., Guo, W. Y., Su, H., Zhang, K. R., Li, Q. X., Yan, W., Ma, X. L., Lopez, B. L., Christopher, T. A., and Gao, F., Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis, 11, 1453–1460 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wei, M., Wang, X., Kuukasjärvi, P., Laurikka, J., Rinne, T., Honkonen, E. L., and Tarkka, M., Bradykinin preconditioning in coronary artery bypass grafting. Ann. Thorac. Surg., 78, 492–497 (2004).

    Article  PubMed  Google Scholar 

  • Xin, Z., Xuefan, Y., and Nanhu, Q., The effect of diabetes on protection of ischaemic postconditioning in myocardial ischaemia-reperfusion injury. Heart, 96, A40 (2010).

    Google Scholar 

  • Xu, K., George, I., Klotz, S., Hay, I., Xydas, S., Zhang, G., Cerami, A., and Wang, J., Erythropoietin derivate improves left ventricular systolic performance and attenuates left ventricular remodeling in rats with myocardial infarctinduced heart failure. J. Cardiovasc. Pharmacol., 56, 506–512 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Yan, M., Chen, C., Zhang, F., and Chen, G., Lidocaine abolishes the myocardial protective effect of sevoflurane post-conditioning. Acta Anaesthesiol. Scand., 52, 111–116 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. C., Liu, Y., Wang, L. F., Cui, L., Ge, Y. G., and Wang, H. S., Abstract 3795: permanent reduction in myocardial infarct size by postconditioning in patients after primary coronary angioplasty. Circulation, 114, II_812 (2006).

    Article  Google Scholar 

  • Yang, X. M., Proctor, J. B., Cui, L., Krieg, T., Downey, J. M., and Cohen, M. V., Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J. Am. Coll. Cardiol., 44, 1103–1110 (2004).

    Article  PubMed  Google Scholar 

  • Yellon, D. M. and Downey, J. M., Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol. Rev., 83, 1113–1151 (2003).

    PubMed  CAS  Google Scholar 

  • Yellon, D. M. and Hausenloy, D. J., Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat. Clin. Pract. Cardiovasc. Med., 2, 568–575 (2005).

    Article  PubMed  Google Scholar 

  • Yu, L. N., Yu, J., Zhang, F. J., Yang, M. J., Ding, T. T., Wang, J. K., He, W., Fang, T., Chen, G., and Yan, M., Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins. J. Zhejiang. Univ. Sci. B, 11, 661–672 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, F., Chen, G., Chen, C., and Yan, M., Sevoflurane postconditioning converts persistent ventricular fibrillation into regular rhythm. Eur. J. Anaesthesiol., 26, 766–771 (2009).

    Article  PubMed  Google Scholar 

  • Zhang, X. H., Li, C. M., Ma, X. J., and Luo, M., Correlation of limb and myocardial ischemia postconditioning with acute myocardial reperfusion injury. Zhonghua Yi Xue Za Zhi, 86, 841–845 (2006).

    PubMed  CAS  Google Scholar 

  • Zhao, Z. Q., Postconditioning in reperfusion injury: a status report. Cardiovasc Drugs Ther., 24, 265–279 (2010).

    Article  PubMed  Google Scholar 

  • Zhao, Z. Q., Corvera, J. S., Halkos, M. E., Kerendi, F., Wang, N. P., Guyton, R. A., and Vinten-Johansen, J., Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart. Circ. Physiol., 285, H579–H588 (2003).

    PubMed  CAS  Google Scholar 

  • Zhao, Z. Q., Sun, H. Y., Wang, N. P., Kin, H., Guyton, R. A., and Vinten-Johansen, J., Hypoxic postconditioning attenuates cardiomyocyte apoptosis via inhibition of jnk and p38 kinases pathway. J. Mol. Cell. Cardiol., 38, 870 (2005).

    Google Scholar 

  • Zhao, Z. Q. and Vinten-Johansen, J., Postconditioning: reduction of reperfusion-induced injury. Cardiovasc. Res., 70, 200–211 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Rohilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohilla, A., Rohilla, S. & Kushnoor, A. Myocardial postconditioning: Next step to cardioprotection. Arch. Pharm. Res. 34, 1409–1415 (2011). https://doi.org/10.1007/s12272-011-0901-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0901-x

Key words

Navigation