Skip to main content
Log in

A dimeric triterpenoid glycoside and flavonoid glycosides with free radical-scavenging activity isolated from Rubus rigidus var. camerunensis

  • Research Articles
  • Drug Design and Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The aerial part of Rubus rigidus var. camerunensis (Rosaceae) is used to treat respiratory and cardiovascular disorders in the Cameroonian traditional medicine. The ethanol extract exhibited more potent antioxidant activity (Emaxs of 119% and 229% activity on DPPH and β-carotene test) than aqueous extract. Bioactivity-guided fractionation of the ethanol extract based on free radical-scavenging assay (DPPH assay) afforded five flavonoid glycosides (four flavonol glycosides and an anthocyanin) and three glucosides of 19α-hydroxyursane-type triterpenoid (two monomeric and one dimeric triterpenoids). The flavonoids were identified as kaempferol 3-O-(2″-O-E-p-coumaroyl)-β-D-glucopyranoside (1), kaempferol-3-O-β-D-glucopyranoside (astragalin, 2), kaempferol-3-O-α-L-arabinofuranoside (juglanin, 3), quercetin-3-O-β-D-glucopyranoside (isoquercitrin, 4), pelargonidin-3-O-β-D-glucopyranoside (callistephin, 5). The three triterpenoids were 2α, 3β, 19α, 23-tetrahydroxyurs-12-ene-28-O-β-D-glucopyranosyl ester (nigaichigoside F1, 6), 2α, 3β, 19α-trihydroxyurs-12-ene-23-carboxyl-28-O-β-D-glucopyranosyl ester (suavissimoside R1, 7) as monomeric triterpenoids and coreanoside F1 (8) as a dimeric triterpenoid. The flavonoids exhibited potent antioxidant activities (66 to 93.56% against DPPH radical) and they were also active on β-carotene test. Coreanoside F1 exhibited a 63% antioxidant activity, meanwhile the other two triterpenoids showed a weak activity. Three important facts on structure-activity relationship were observed: Compound 8, a dimeric triterpenoid glycoside, strongly enhanced antioxidant activity of its monomers, compound 3 with 3-O-α-L-arabinofuranyl has much more potent activity than compound 2 with 3-O-β-D-glucopyranosyl, and antocyanin (5) is more potent than its corresponding flavonol glycosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blois, M. S., Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200 (1958).

    Article  CAS  Google Scholar 

  • Braca, A., Fico, G., Morelli, I., De Simone, F., Tomè, F., and De Tommasi, N., Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species. J. Ethnopharmacol., 86, 63–67 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Cao, G., Sofic, E., and Prior, R. L., Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med., 22, 749–760 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Van Poel, B., Pieters, L., Vlietinck, A. J., and Vanden Berghe, D., Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 61, 71–76 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Dickson, R. A., Houghton, P. J., and Hylands, P. J., Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry, 68, 1436–1441 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Facino, R. M., Carini, M., Franzoi, L., Pirola, O., and Bosisio, E., Phytochemical characterization and radical scavenger activity of flavonoids from Helichrysum italicum G. Don (Compositae). Pharmacol. Res., 22, 709–721 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Frankel, E. N., Huang, S.-W., Kanner, J., and Ad German, J. B., Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsions. J. Agric. Food Chem., 42, 1054–1059 (1994).

    Article  CAS  Google Scholar 

  • Fu, X. J., Liu, H. B., Wang, P., and Guan, H. S., A study on the antioxidant activity and tissues selective inhibition of lipid peroxidation by saponins from the roots of Platycodon grandiflorum. Am. J. Chin. Med., 37, 967–975 (2009).

    Article  PubMed  Google Scholar 

  • Gao, F., Chen, F.-H., Tanaka, T., Kasai, R., Seto, T., and Tanaka, O., 19α-Hydroxyursane-type triterpene glucosyl esters from the roots of Rubus suavissimus S. Lee. Chem. Pharm. Bull., 33, 37–40 (1985).

    CAS  Google Scholar 

  • Gordon, M. H., The Mechanism of Antioxidant Action in vitro, in Food Antioxidants, edited by BJF Hudson, Elsevier Applied Science, London, pp. 1–18, (1990).

    Google Scholar 

  • Gupta, S., Sharma, S. B., Prabhu, K. M., and Bansal, S. K., Protective role of Cassia auriculata leaf extract on hyperglycemia-induced oxidative stress and its safety evaluation. Indian J. Biochem. Biophys., 46, 371–377 (2009).

    PubMed  CAS  Google Scholar 

  • Häkkinen, S., Heinonen, M., Kärenlampi, S., Mykkänen, H., Ruuskanen, J., and Törrönen, R., Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. Int., 32, 345–353 (1999).

    Article  Google Scholar 

  • Hussein, S. A. M., Ayoub, N. A., and Nawwar, M. A. M., Caffeoyl sugar esters and an ellagitannin from Rubus sanctus. Phytochemistry, 63, 905–911 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kim, M. H., Lee, J., Yoo, D. S., Lee, Y. G., Byeon, S. E., Hong, E. K., and Cho, J. Y., Protective effect of stress-induced liver damage by saponin fraction from Codonopsis lanceolata. Arch. Pharm. Res., 32, 1441–1446 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Koleva, I. I., Van Beek, T. A., Linssen, J. P., de Groot, A., and Evstatieva, L.N., Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem. Anal., 13, 8–17 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kuskoski, E. M., Vega, J. M., Rios, J. J., Fett, R., Troncoso, A. M., and Asuero, A. G., Characterization of anthocyanins from the fruits of baguaçu (Eugenia umbelliflora Berg). J. Agric. Food Chem., 51, 5450–5454 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Orjala, J., Sticher, O., and Rali, T., Acylated flavonol glycosides from leaves of Stenochlaena palustris. J. Nat. Prod., 62, 70–75 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mora, A., Payá, M., RÍos, J. L., and Alcaraz, M. J., Structureactivity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem. Pharmacol., 40, 793–797 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Nzowa, L. K., Barboni, L., Teponno, R. B., Ricciutelli, M., Lupidi, G., Quassinti, L., Bramucci, M., and Tapondjou, L. A., Rheediinosides A and B, two antiproliferative and antioxidant triterpene saponins from Entada rheedii. Phytochemistry, 71, 254–261 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Ohtani, K., Miyajima, C., Takahasi, T., Kasai, R., Tanaka, O., Hahn, D.-R., and Naruhashi, N., A dimeric triterpene-glycoside from Rubus coreanus. Phytochemistry, 29, 3275–3280 (1990).

    Article  CAS  Google Scholar 

  • Olszewska, M., High-performance liquid chromatographic identification of flavonoid monoglycosides from Prunus serotina ehrh. Acta Pol. Pharm., 62, 435–441 (2005).

    PubMed  CAS  Google Scholar 

  • Porter, W. L., Paradoxical behaviour of antioxidants in food and biological systems. In antioxidants, Chemical physiological, Nutritionnal and Toxicological Aspects, Williams GM (ed.). Princeton Scientific, Princeton, NJ, pp. 93–121, (1993).

    Google Scholar 

  • Seto, T., Tanaka, T., Tanaka, O., and Naruhashi, N., β-Glucosyl esters of 19α-hydroxy ursolic acid derivatives in leaves of Rubus Species. Phytochemistry, 23, 2829–2834 (1984).

    Article  CAS  Google Scholar 

  • Singab, A. N. B., Youssef, D. T. A., Noaman, E., and Kotb, S., Hepatoprotective effect of flavonol glycosides rich fraction from Egyptian Vicia calcarata Desf. Against CCl4-induced liver damage in rats. Arch. Pharm. Res., 28, 791–798 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Traykova, M. and Kostova, I., Coumarin derivatives and oxidative stress. Int. J. Pharmacol., 1, 29–32 (2005).

    Article  CAS  Google Scholar 

  • Tung, N. H., Song, G. Y., Nhiem, N. X., Ding, Y., Tai, B. H., Jin, L. G., Lim, C.-M., Hyun, J. W., Park, C. J., Kang, H. K., and Kim, Y. H., Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J. Agric. Food Chem., 58, 868–874 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Wang, B. G., Zhu, W. M., Li, X. M., Jia, Z. J., and Hao, X. J., Rubupungenosides A and B, two novel triterpenoid saponin dimers from the aerial parts of Rubus pungens. J. Nat. Prod., 63, 851–854 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Yen, G.-C. and Chen, H.-Y., Antioxidant activity of various tea extracts in relation their antimutagenicity. J. Agric. Food Chem., 43, 27–32 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Juhn Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguelefack, T.B., Mbakam, F.H.K., Tapondjou, L.A. et al. A dimeric triterpenoid glycoside and flavonoid glycosides with free radical-scavenging activity isolated from Rubus rigidus var. camerunensis . Arch. Pharm. Res. 34, 543–550 (2011). https://doi.org/10.1007/s12272-011-0404-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0404-9

Key words

Navigation