Skip to main content

Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking

Abstract

Advanced glycation end products (AGEs) play an important role in the development of chronic diabetic complications. Chlorogenic acid (CGA) is a phenolic compound formed by the esterification of caffeic and quinic acids. In this study, we evaluated the inhibitory effects of CGA against the formation of AGEs and AGEs protein cross-linking in vitro. An in vitro assay for glycation of bovine serum albumin by high glucose showed that CGA inhibited AGEs formation with an IC50 value of 148.32 μM and was found to be more effective than aminoguanidine, a well-known AGEs inhibitor (IC50; 807.67 μM). In an indirect AGE-ELISA assay, the CGA exhibited more potent inhibitory activity on the cross-linking of AGEs to collagen than aminoguanidine. In addition, the inhibitory effects of CGA on AGEs formation and on its cross-linking with collagen might be caused by its interactions with reactive decarbonyl compounds, such as methylglyoxal. These results suggest that CGA could be beneficial in the prevention of AGEs progression in patients with diabetes because CGA can attenuate AGEs deposition in glucose.

This is a preview of subscription content, access via your institution.

References

  1. Andrade-Cetto, A. and Wiedenfeld, H., Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J. Ethnopharmacol., 78, 145–149 (2001).

    PubMed  Article  CAS  Google Scholar 

  2. Baynes, J. W. and Thorpe, S. R., Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 48, 1–9 (1999).

    PubMed  Article  CAS  Google Scholar 

  3. Bourajjaj, M., Stehouwer, C. D., Van Hinsbergh, V. W., and Schalkwijk, C. G., Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem. Soc. Trans., 31, 1400–1402 (2003).

    PubMed  Article  CAS  Google Scholar 

  4. Brownlee, M., Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med., 46, 223–234 (1995).

    PubMed  Article  CAS  Google Scholar 

  5. Brownlee, M., Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820 (2001).

    PubMed  Article  CAS  Google Scholar 

  6. Degenhardt, T. P., Alderson, N. L., Arrington, D. D., Beattie, R. J., Basgen, J. M., Steffes, M. W., Thorpe, S. R., and Baynes, J. W., Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int., 61, 939–950 (2002).

    PubMed  Article  CAS  Google Scholar 

  7. Edelstein, D. and Brownlee, M., Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes, 41, 26–29 (1992).

    PubMed  Article  CAS  Google Scholar 

  8. Forbes, J. M., Soulis, T., Thallas, V., Panagiotopoulos, S., Long, D. M., Vasan, S., Wagle, D., Jerums, G., and Cooper, M. E., Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia, 44, 108–114 (2001).

    PubMed  Article  CAS  Google Scholar 

  9. Gugliucci, A., Bastos, D. H., Schulze, J., and Souza, M. F., Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia, 80, 339–344 (2009).

    PubMed  Article  CAS  Google Scholar 

  10. Haik, G. M., Jr., Lo, T. W., and Thornalley, P. J., Methylglyoxal concentration and glyoxalase activities in the human lens. Exp. Eye Res., 59, 497–500 (1994).

    PubMed  Article  CAS  Google Scholar 

  11. Herrera-Arellano, A., Aguilar-Santamaria, L., Garcia-Hernandez, B., Nicasio-Torres, P., and Tortoriello, J., Clinical trial of Cecropia obtusifolia and Marrubium vulgare leaf extracts on blood glucose and serum lipids in type 2 diabetics. Phytomedicine, 11, 561–566 (2004).

    PubMed  Article  CAS  Google Scholar 

  12. Jang, D. S., Yoo, N. H., Lee, Y. M., Yoo, J. L., Kim, Y. S., and Kim, J. S., Constituents of the flowers of Erigeron annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase. Arch. Pharm. Res., 31, 900–904 (2008).

    PubMed  Article  CAS  Google Scholar 

  13. Kiho, T., Usui, S., Hirano, K., Aizawa, K., and Inakuma, T., Tomato paste fraction inhibiting the formation of advanced glycation end-products. Biosci. Biotechnol. Biochem., 68, 200–205 (2004).

    PubMed  Article  CAS  Google Scholar 

  14. Kono, Y., Kashine, S., Yoneyama, T., Sakamoto, Y., Matsui, Y., and Shibata, H., Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem., 62, 22–27 (1998).

    PubMed  Article  CAS  Google Scholar 

  15. Lo, T. W., Selwood, T., and Thornalley, P. J., The reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins. Biochem. Pharmacol., 48, 1865–1870 (1994).

    PubMed  Article  CAS  Google Scholar 

  16. Loske, C., Gerdemann, A., Schepl, W., Wycislo, M., Schinzel, R., Palm, D., Riederer, P., and Munch, G., Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur. J. Biochem., 267, 4171–4178 (2000).

    PubMed  Article  CAS  Google Scholar 

  17. Miyata, T., Wada, Y., Cai, Z., Iida, Y., Horie, K., Yasuda, Y., Maeda, K., Kurokawa, K., and Van Ypersele De Strihou, C., Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int., 51, 1170–1181 (1997).

    PubMed  Article  CAS  Google Scholar 

  18. Nagaraj, R. H., Sarkar, P., Mally, A., Biemel, K. M., Lederer, M. O., and Padayatti, P. S., Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch. Biochem. Biophys., 402, 110–119 (2002).

    PubMed  Article  CAS  Google Scholar 

  19. Osawa, T. and Kato, Y., Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann. N. Y. Acad. Sci., 1043, 440–451 (2005).

    PubMed  Article  CAS  Google Scholar 

  20. Pokupec, R., Kalauz, M., Turk, N., and Turk, Z., Advanced glycation endproducts in human diabetic and non-diabetic cataractous lenses. Graefes Arch. Clin. Exp. Ophthalmol., 241, 378–384 (2003).

    PubMed  Article  CAS  Google Scholar 

  21. Price, D. L., Rhett, P. M., Thorpe, S. R., and Baynes, J. W., Chelating activity of advanced glycation end-product inhibitors. J. Biol. Chem., 276, 48967–48972 (2001).

    PubMed  Article  CAS  Google Scholar 

  22. Rodriguez De Sotillo, D. V. and Hadley, M., Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J. Nutr. Biochem., 13, 717–726 (2002).

    PubMed  Article  CAS  Google Scholar 

  23. Sato, T., Iwaki, M., Shimogaito, N., Wu, X., Yamagishi, S., and Takeuchi, M., TAGE (toxic AGEs) theory in diabetic complications. Curr. Mol. Med., 6, 351–358 (2006).

    PubMed  Article  CAS  Google Scholar 

  24. Sensi, M., Pricci, F., Andreani, D., and Di Mario, U., Advanced nonenzymatic glycation endproducts (AGE): their relevance to aging and the pathogenesis of late diabetic complications. Diabetes Res., 16, 1–9 (1991).

    PubMed  CAS  Google Scholar 

  25. Shamsi, F. A., Partal, A., Sady, C., Glomb, M. A., and Nagaraj, R. H., Immunological evidence for methylglyoxal-derived modifications in vivo. Determination of antigenic epitopes. J. Biol. Chem., 273, 6928–6936 (1998).

    PubMed  Article  CAS  Google Scholar 

  26. Singh, R., Barden, A., Mori, T., and Beilin, L., Advanced glycation end-products: a review. Diabetologia, 44, 129–146 (2001).

    PubMed  Article  CAS  Google Scholar 

  27. Sohn, E., Kim, J., Kim, C. S., Kim, Y. S., Jang, D. S., and Kim, J. S., Extract of the aerial parts of Aster koraiensis reduced development of diabetic nephropathy via antiapoptosis of podocytes in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun., 391, 733–738 (2010).

    PubMed  Article  CAS  Google Scholar 

  28. Stitt, A., Gardiner, T. A., Alderson, N. L., Canning, P., Frizzell, N., Duffy, N., Boyle, C., Januszewski, A. S., Chachich, M., Baynes, J. W., and Thorpe, S. R., The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes, 51, 2826–2832 (2002).

    PubMed  Article  CAS  Google Scholar 

  29. Stitt, A. W., The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp. Mol. Pathol., 75, 95–108 (2003).

    PubMed  Article  CAS  Google Scholar 

  30. Svilaas, A., Sakhi, A. K., Andersen, L. F., Svilaas, T., Strom, E. C., Jacobs, D. R., Jr., Ose, L., and Blomhoff, R., Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. J. Nutr., 134, 562–567 (2004).

    PubMed  CAS  Google Scholar 

  31. Thornalley, P. J., Langborg, A., and Minhas, H. S., Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 344Pt 1, 109–116 (1999).

    PubMed  Article  CAS  Google Scholar 

  32. Thornalley, P. J., Yurek-George, A., and Argirov, O. K., Kinetics and mechanism of the reaction of aminoguanidine with the alpha-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem. Pharmacol., 60, 55–65 (2000).

    PubMed  Article  CAS  Google Scholar 

  33. Van Dam, R. M. and Feskens, E. J., Coffee consumption and risk of type 2 diabetes mellitus. Lancet, 360, 1477–1478 (2002).

    PubMed  Article  Google Scholar 

  34. Vasan, S., Zhang, X., Kapurniotu, A., Bernhagen, J., Teichberg, S., Basgen, J., Wagle, D., Shih, D., Terlecky, I., Bucala, R., Cerami, A., Egan, J., and Ulrich, P., An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature, 382, 275–278 (1996).

    PubMed  Article  CAS  Google Scholar 

  35. Vinson, J. A. and Howard III, T. B., Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem., 7, 659–663 (1996).

    Article  CAS  Google Scholar 

  36. Wolff, S. P., Bascal, Z. A., and Hunt, J. V., Autoxidative glycosylation: free radicals and glycation theory. Prog. Clin. Biol. Res., 304, 259–275 (1989).

    PubMed  CAS  Google Scholar 

  37. Wolff, S. P., Jiang, Z. Y., and Hunt, J. V., Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med., 10, 339–352 (1991).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin Sook Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J., Jeong, IH., Kim, CS. et al. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch. Pharm. Res. 34, 495–500 (2011). https://doi.org/10.1007/s12272-011-0319-5

Download citation

Key words

  • Advanced glycation end products
  • Chlorogenic acid
  • Diabetic complications
  • Methylglyoxal