Constituents from Senecio scandens and their antioxidant bioactivity

  • Yann-Lii Leu
  • Chih-Lung Lin
  • Ping-Chung Kuo


Forty-one compounds including two new constituents, senecainin A (1) and 3-methoxyisonicotinic acid (2), were characterized from the methanol extracts of the whole plant of Senecio scandens. The structures of the new compounds were comprehensively established with the aid of 1D and 2D NMR spectroscopic and mass spectrometric analyses. The chemical structures of known compounds were identified by comparison of their spectroscopic and physical data with those reported in the literature. In addition, the antioxidant activity of some of the isolates was examined in the DPPH free radical scavenging assay. Among the tested compounds, (−)-monoepoxylignanolide, (−)-pinoresinol and (−)-epi-pinoresinol displayed significant antioxidant bioactivity.

Key words

Asteraceae Traditional Chinese medicines Antioxidant DPPH 


  1. Alam, M. S., Chopra, N., Ali, M., and Niwa, M., Oleanen and stigmasterol derivatives from Ambroma augusta. Phytochemistry, 41, 1197–1120 (1996).CrossRefGoogle Scholar
  2. Bandaranayake, W. M., Terpenoids of Canarium zeylanicum. Phytochemistry, 19, 255–257 (1980).CrossRefGoogle Scholar
  3. Barrero, A. F., Sanchez, J. F., Alvarez-Manzaneda, E. J., Dorado, M. M., and Haidour, A., Terpenoids and sterols from the wood of Abies pinsapo. Phytochemistry, 32, 1261–1265 (1993).CrossRefGoogle Scholar
  4. Burgueño-Tapia, E., Hernández, L. R., Reséndiz-Villalobos, A. Y., and Joseph-Nathan, P., Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides. Magn. Reson. Chem., 42, 887–892 (2004).PubMedCrossRefGoogle Scholar
  5. Cabrera, G. M., Gallo, M., and Seldes, A. M., Cycloartane derivatives from Tillandsia usneoides. J. Nat. Prod., 59, 343–347 (1996).CrossRefGoogle Scholar
  6. Cabrera, G. M. and Seldes, A. M., Short side-chain cycloartanes from Tillandsia usneoides. Phytochemistry, 45, 1019–1021 (1997).CrossRefGoogle Scholar
  7. Cardoso, J. M., Jakupovic, J., and Bohlmann, F., Eremophilanebisabolane and shikimic acid derivatives from Portugese Senecio. Phytochemistry, 26, 2321–2324 (1987).CrossRefGoogle Scholar
  8. Chen, C. Y., Chang, F. R., Teng, C. M., and Wu, C. Y., Cheritamine, a new N-fatty acyl tryptamine and other constituents from the stems of Annona cherimola. J. Chin. Chem. Soc., 46, 77–86 (1999).Google Scholar
  9. Cheng, D. L., Cao, X. P., Cheng, J. K., and Roeder, E., Diterpene glycosides from Senecio rufus. Phytochemistry, 32, 151–153 (1992).CrossRefGoogle Scholar
  10. Crestini, C. and D'Auria, M., Singlet oxygen in the photo degradation of lignin models. Tetrahedron, 53, 7877–7888 (1997).CrossRefGoogle Scholar
  11. de Moura, N. F., Simionatto, E., Porto, C., Hoelzel, S. C. S., Dessoy, E. C. S., Zanatta, N., and Morel, A. F., Quinoline alkaloids, coumarins and volatile constituents of Helietta longifoliata. Planta Med., 68, 631–634 (2002).PubMedCrossRefGoogle Scholar
  12. Dupré, S., Grenz, M., Jakupovic, J., Bohlmann, F., and Niemeyer, H. M., Eremophilane, germacrane and shikimic acid derivatives from Chilean Senecio species. Phytochemistry, 30, 1211–1220 (1991).CrossRefGoogle Scholar
  13. El-Batta, A., Jiang, C., Zhao, W., Anness, R., Cooksy, A. L., and Bergdahl, M., Wittig reactions in water media employing stabilized ylides with aldehydes. Synthesis of α,β- unsaturated esters from mixing aldehydes, α-bromoesters, and Ph3P in aqueous NaHCO3. J. Org. Chem., 72, 5244–5259 (2007).PubMedCrossRefGoogle Scholar
  14. Frenkel, K., Carcinogen-mediated oxidant formation and DNA damage. Pharmacol. Ther., 53, 126–166 (1992).CrossRefGoogle Scholar
  15. Fujimoto, H., Nakamura, E., Okuyama, E., and Ishibashi, M., Six immunosuppressive features from an ascomycete, Zopfiella longicaudata, found in a screening study monitored by immunomodulatory activity. Chem. Pharm. Bull., 52, 1005–1008 (2004).PubMedCrossRefGoogle Scholar
  16. Georges, P., Sylvestre, M., Ruegger, H., and Bourgeois, P., Ketosteroids and hydroxyketosteroids, minor metabolites of sugarcane wax. Steroids, 71, 647–652 (2006).PubMedCrossRefGoogle Scholar
  17. Gu, J. Q., Wang, Y., Franzblau, S. G., Montenegro, G., and Timmermann, B. N., Constituents of Senecio chionophilus with potential antitubercular activity. J. Nat. Prod., 67, 1483–1487 (2004).PubMedCrossRefGoogle Scholar
  18. Halliwell, B. and Gutteridge, J. M. C., Oxygen toxicity, oxygen radicals, transition metals, and disease. Biochem. J., 219, 1–4 (1984).PubMedGoogle Scholar
  19. Imaida, K., Fukushima, T., Shivai, T., Ohtani, M., Nakanishi, K., and Ito, N., Promoting activities of butylated hydroxyanisole and butylated hydroxytoluene on 2-stage urinary bladder carcinogenesis and inhibition of γ-glutamyl transpeptidase-positive foci development in the liver of rats. Carcinogenesis, 4, 895–899 (1983).PubMedCrossRefGoogle Scholar
  20. Isik, E., Sabudak, T., and Oksuz, S., Flavonoids from Trifolium resupinatum var. mictocephalum. Chem. Nat. Compd., 43, 614–615 (2007).CrossRefGoogle Scholar
  21. Jeremy, I. L. and Mila, T. D., Rapid, one-pot conversion of arylfluorides into phenols with 2-butyn-1-oland potassium tbutoxide in DMSO. Synth. Commun., 32, 1401–1406 (2002).CrossRefGoogle Scholar
  22. Kitajima, J., Kimizuka, K., and Tanaka, Y., New sterols and triterpenoids of Ficus pumila fruit. Chem. Pharm. Bull., 46, 1408–1411 (1998).Google Scholar
  23. Kondo, M., The nuclear magnetic resonance study of several o-disubstituted benzenes. Bull. Chem. Soc. Jpn., 45, 2790–2793 (1972).CrossRefGoogle Scholar
  24. Kontiza, I., Abatis, D., Malakate, K., Vagias, C., and Roussis, V., 3-Keto steroids from the marine organisms Dendrophyllia cornigera and Cymodocea nodosa. Steroids, 71, 177–181 (2006).PubMedCrossRefGoogle Scholar
  25. Krohn, K. and Knauer, B., The diastereoselectivity of zirconium alkoxide catalysed Meerwein-Ponndorf-Verley reductions. Liebigs Ann., 1995, 1347–1351 (1995).CrossRefGoogle Scholar
  26. Kuo, P. C., Yang, M. L., Wu, P. L., Shih, H. N., Thang, T. D., Dung, N. X., and Wu, T. S., Chemical constituents from Abutilon indicum. J. Asian Nat. Prod. Res., 10, 689–693 (2008).CrossRefGoogle Scholar
  27. Lee, C. K. and Chang, M. H., The chemical constituents from the heart wood of Eucalyptus citriodora. J. Chin. Chem. Soc., 47, 555–560 (2000).Google Scholar
  28. Lee, C. K., Lu, C. K., Kuo, Y. H., Chen, J. Z., and Sun, G. Z., New prenylated flavones from the roots of Ficus beecheyana. J. Chin. Chem. Soc., 51, 437–441 (2004).Google Scholar
  29. Lee, J. S., Kim, H. J., Woo, E. R., Park, Y. A., Lee, Y. S., and Park, H., 7-Feruloylloganin: an iridoid glucoside from stems of Lonicera insularis. Planta Med., 67, 99–102 (2001).PubMedCrossRefGoogle Scholar
  30. Lee, T. H., Chiou, J. L., Lee, C. K., and Kuo, Y. H., Separation and determination of chemical constituents in the roots of Rhus javanica L. var. roxburghiana. J. Chin. Chem. Soc., 52, 833–841 (2005).Google Scholar
  31. Lin, Y. L., Chen, Y. L., and Kuo, Y. H., Three new flavonoids, 3′-methoxylupinifolin, laxifolin, and isolaxifolin from the roots of Derris laxiflora benth. Chem. Pharm. Bull., 39, 3132–3135 (1991).Google Scholar
  32. Meng, F. J., Zhao, H., Xie, W. D., Zhao, R. J., Lai, P. X., Zhou, Y. X., and Miao, Y. L., New ereomphilenolactones from Senecio nemorensis. Helv. Chim. Acta, 90, 2196–2200 (2007).CrossRefGoogle Scholar
  33. Mohamed, A. E. H. H. and Ahmed, A. A., Eremophilane-type sesquiterpene derivatives from Senecio aegyptius var. discoideus. J. Nat. Prod., 68, 439–442 (2005).CrossRefGoogle Scholar
  34. Mongin, F., Trecourt, F., and Queguiner, G., Directed lithiation of unprotected pyridinecarboxylic acids. Tetrahedron Lett., 40, 5483–5486 (1999).CrossRefGoogle Scholar
  35. Nishida, K., Sumimoto, M., and Kondo, T., Studies on the chemical constituent of bark of Symplacos lucida S. et Z. (II nd Rep.) on the hydrolysis of the glucoside. J. Japan Forest Soc., 33, 235–239 (1951).Google Scholar
  36. Pryor, W. A., The antioxidant nutrients and disease prevention — what do we know and what do we need to find out? Am. J. Clin. Nutr., 53, S391–S393 (1991).Google Scholar
  37. Reina, M., González-Coloma, A., Gutiérrez, C., Cabrera, R., Rodrguez, M. L., Fajardo, V., and Villarroel, L., Defensive chemistry of Senecio miser. J. Nat. Prod., 64, 6–11 (2001).PubMedCrossRefGoogle Scholar
  38. Robbins, R. J. and Schmidt, W. F., Optimized synthesis of four isotopically labeled (13C-enriched) phenolic acids via a malonic acid condensation. J. Label Compd. Radiopharm., 47, 797–806 (2004).CrossRefGoogle Scholar
  39. Scott, A. I., Interpretation of the ultraviolet spectra of natural products. Pergamon Press, New York, (1964).Google Scholar
  40. Seldes, A. M., Deluca, M. E., Gros, E. G., Rovirosa, J., San-Martin, A., and Darias, J., Steroids from aquatic organisms, XLX. New sterols from the antarctic sponge Artemisina apollinis. Z. Naturforsch., 45b, 83–86 (1990).Google Scholar
  41. Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T., Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40, 945–948 (1992).CrossRefGoogle Scholar
  42. Stevens, D. R., Till, C. P., and Whiting, D. A., A new synthetic route to furofuranoid lignins via the intramolecular Mukaiyama reaction. J. Chem. Soc. Perkin Trans. I, 185–190 (1992).Google Scholar
  43. Torres, P., Ayala, J., Grande, C., Macías, M. J., and Grande, M., Furanoeremophilanes and a bakkenolide from Senecio auricula var. major. Phytochemistry, 47, 57–61 (1998).CrossRefGoogle Scholar
  44. Yue, J. M., Chen, S. N., Lin, Z. W., and Sun, H. D., Sterols from the fungus Lactarium volumus. Phytochemistry, 56, 801–806 (2001)PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Graduate Institute of Natural ProductsChang Gung UniversityTaoyuanTaiwan
  2. 2.Department of BiotechnologyNational Formosa UniversityYunlinTaiwan

Personalised recommendations