Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

NecroX as a novel class of mitochondrial reactive oxygen species and ONOO scavenger


Mitochondrial reactive oxygen species and reactive nitrogen species are proven to be major sources of oxidative stress in the cell; they play a prominent role in a wide range of human disorders resulting from nonapoptotic cell death. The aim of this study is to examine the cytoprotective effect of the NecroX series against harmful stresses, including pro-oxidant (tertiarybutylhydroperoxide), doxorubicin, CCl4, and hypoxic injury. In this study, these novel chemical molecules inhibited caspase-independent cell death with necrotic morphology, which is distinctly different from apoptosis, autophagy, and necroptosis. In addition, they displayed strong mitochondrial reactive oxygen species and ONOO scavenging activity. Further, oral administration of these molecules in C57BL/6 mice attenuated streptozotocin-induced pancreatic islet β-cell destruction as well as CCl4-induced hepatotoxicity in vivo. Taken together, these results demonstrate that the NecroX series are involved in the blockade of nonapoptotic cell death against mitochondrial oxidative stresses. Thus, these chemical molecules are potential therapeutic agents in mitochondria-related human diseases involving necrotic tissue injury.

This is a preview of subscription content, log in to check access.


  1. Acuna-Castroviejo, D., Escames, G., Rodriguez, M. I., and Lopez, L. C., Melatonin role in the mitochondrial function. Front. Biosci., 1, 947–963 (2007).

  2. Baines, C. P., The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res. Cardiol., 104, 181–188 (2009).

  3. Baynes, J. W. and Thorpe, S. R., Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes, 48, 1–9 (1999).

  4. Belizário, J. E., Alves, J., Occhiucci, J. M., Garay-Malpartida, M., and Sesso, A., A mechanistic view of mitochondrial death decision pores. Braz. J. Med. Biol. Res., 40, 1011–1024 (2007).

  5. Bhatia, M., Apoptosis versus necrosis in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 286, G189–G196 (2004).

  6. Brambilla, L., Sestili, P., Guidarelli, A., Palomba, L., and Cantoni, O., Electron transport-mediated wasteful consumption of NADH promotes the lethal response of U937 cells to tert-butylhydroperoxide. J. Pharmacol. Exp. Ther., 284, 1112–1121 (1998).

  7. Chen, H. W., Chiang, T., Wang, C. Y., and Lii, C. K., Inhibition of tert-butyl hydroperoxide-induced cell membrane bleb formation by alpha-tocopherol and glutathione. Food Chem. Toxicol., 38, 1089–1096 (2000).

  8. Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini D., and Milzani, A., Biomarkers of oxidative damage in human disease. Clin. Chem., 52, 601–623 (2006).

  9. Degterev, A., Hitomi, J., Germscheid, M., Ch’en, I. L., Korkina, O., Teng, X., Abbott, D., Cuny, G. D., Yuan, C., Wagner, G., Hedrick, S. M., Gerber, S. A., Lugovskoy, A., and Yuan, J., Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol., 4, 313–321 (2008).

  10. Devarajan, P., Cellular and molecular derangements in acute tubular necrosis. Curr. Opin. Pediatr., 17, 193–199 (2005).

  11. Dodo, K., Katoh, M., Shimizu, T., Takahashi, M., and Sodeoka, M., Inhibition of hydrogen peroxide-induced necrotic cell death with 3-amino-2-indolylmaleimide derivatives. Bioorg. Med. Chem. Lett., 15, 3114–3118 (2005).

  12. Dröge, W., Free radicals in the physiological control of cell function. Physiol. Rev., 82, 47–95 (2002).

  13. Escames, G., López, L. C., Ortiz, F., López, A., García, J. A., Ros, E., and Acuña-Castroviejo, D., Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J., 274, 2135–2147 (2007).

  14. Ferri, K. F. and Kroemer, G., Organelle-specific initiation of cell death pathways. Nat. Cell Biol., 3, E255–E263 (2001).

  15. Festjens, N., Vanden Berghe, T., and Vandenabeele, P., Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta, 1757, 1371–1387 (2006).

  16. Galluzzi, L. and Kroemer, G., Necroptosis: a specialized pathway of programmed necrosis. Cell, 135, 1161–1163 (2008).

  17. Gane, E. J., Weilert, F., Orr, D. W., Keogh, G. F., Gibson, M., Lockhart, M. M., Frampton, C. M., Taylor, K. M., Smith, R. A., and Murphy, M. P., The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int., 30, 1019–1026 (2010).

  18. Gasparini, G., Saponaro, G., Di Nardo, F., Moro, A., Boniello, R., Cervelli, D., Marianetti, T. M., Palazzoni, G., and Pelo, S., Clinical experience with spiramycin in bisphosphonateassociated osteonecrosis of the jaw. Int. J. Immunopathol. Pharmacol., 23, 619–626 (2010).

  19. Gogvadze, V. and Zhivotovsky, B., Alteration of mitochondrial function and cell sensitization to death. J. Bioenerg. Biomembr., 39, 23–30 (2007).

  20. Golstein, P. and Kroemer, G., Cell death by necrosis: Towards a molecular definition. Trends Biochem. Sci., 32, 37–43 (2007).

  21. Hengartner, M. O., The biochemistry of apoptosis. Nature, 407, 770–776 (2000).

  22. Hetz, C. A., Torres, V., and Quest, A. F., Beyond apoptosis: nonapoptotic cell death in physiology and disease. Biochem. Cell Biol., 83, 579–588 (2005).

  23. Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J., and Yuan, J., Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell, 135, 1311–1323 (2008).

  24. Jaworek, J., Leja-Szpak, A., Bonior, J., Nawrot, K., Tomaszewska, R., Stachura, J., Sendur, R., Pawlik, W., Brzozowski, T., and Konturek, S. J., Protective effect of melatonin and its precursor L-tryptophan on acute pancreatitis induced by caerulein overstimulation or ischemia/reperfusion. J. Pineal Res., 34, 40–52 (2003).

  25. Kroemer, G., Galluzzi, L., and Brenner, C., Mitochondrial membrane permeabilization in cell death. Physiol. Rev., 87, 99–163 (2007).

  26. Leist, M. and Jäättelä, M., Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol., 2, 589–598 (2001).

  27. Maritim, A. C., Sanders, R. A., and Watkins, J. B. 3rd., Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol., 17, 24–38 (2003).

  28. Millán-Plano, S., Piedrafita, E., Miana-Mena, F. J., Fuentes-Broto, L., Martínez-Ballarín, E., López-Pingarrón, L., Sáenz, M. A., and García, J. J., Melatonin and structurally-related compounds protect synaptosomal membranes from free radical damage. Int. J. Mol. Sci., 11, 312–328 (2010).

  29. Nicotera, P., Leist, M., and Manzo, L., Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci., 20, 46–51 (1999).

  30. Orrenius, S., Gogvadze, V., and Zhivotovsky, B., Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol., 47, 143–183 (2007).

  31. Ott, M., Gogvadze, V., Orrenius, S., and Zhivotovsky, B., Mitochondria, oxidative stress and cell death. Apoptosis, 12, 913–922 (2007).

  32. Pacher, P., Beckman, J. S., and Liaudet, L., Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 87, 315–424. (2007).

  33. Panasenko, O. M., Chekanov, A. V., Arnhold, J., Sergienko, V. I., Osipov, A. N., and Vladimirov, Y. A., Generation of free radicals during decomposition of hydroperoxide in the presence of myeloperoxidase or activated neutrophils. Biochemistry Mosc., 70, 998–1004 (2005).

  34. Poeggeler, B., Reiter, R. J., Hardeland, R., Tan, D. X., and Barlow-Walden, L. R., Melatonin and structurally-related, endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep., 2, 179–184 (1996).

  35. Ramakrishna, V. and Jailkhani, R., Oxidative stress in noninsulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol., 45, 41–46 (2008).

  36. Rattan, A. K. and Arad, Y., Inhibition of LDL oxidation by a new estradiol receptor modulator compound LY-139478, comparative effect with other steroids. Atherosclerosis, 136, 305–314 (1998).

  37. Reiter, R. J., Tan, D. X., Mayo, J. C., Sainz, R. M., Leon, J., and Czarnocki, Z., Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim. Pol., 50, 1129–1146 (2003).

  38. Ridnour, L. A., Thomas, D. D., Mancardi, D., Espey, M. G., Miranda, K. M., Paolocci, N., Feelisch, M., Fukuto, J., and Wink, D. A., The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem., 385, 1–10 (2004).

  39. Roberts, R. A., Smith, R. A., Safe, S., Szabo, C., Tjalkens, R. B., and Robertson, F. M., Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology, 276, 85–94 (2010).

  40. Sardão, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., and Wallace, K. B., Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide-characterization of morphological features of cell death. BMC Cell Biol., 8, 11 (2007).

  41. Saxena, A. K., Srivastava, P., Kale, R. K., and Baquer, N. Z., Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem. Pharmacol., 45, 539–542 (1993).

  42. Smith, R. A., Adlam, V. J., Blaikie, F. H., Manas, A. R., Porteous, C. M., James, A. M., Ross, M. F., Logan, A., Cochemé, H. M., Trnka, J., Prime, T. A., Abakumova, I., Jones, B. A., Filipovska, A., and Murphy, M. P., Mitochondria-targeted antioxidants in the treatment of disease. Ann. N. Y. Acad. Sci., 1147, 105–111 (2008).

  43. Smith, R. A. and Murphy, M. P., Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann. N. Y. Acad. Sci., 1201, 96–103 (2010).

  44. Snow, B. J., Rolfe, F. L., Lockhart, M. M., Frampton, C. M., O’sullivan, J. D., Fung, V., Smith, R. A., Murphy, M. P., and Taylor, K. M., A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord., 25, 1670 (2010).

  45. Syntichaki, P. and Tavernarakis, N., Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep., 3, 604–609 (2002).

  46. Theruvath, T. P., Snoddy, M. C., Zhong, Z., and Lemasters, J. J., Mitochondrial permeability transition in liver ischemia and reperfusion: role of c-Jun N-terminal kinase 2. Transplantation, 85, 1500–1504 (2008).

  47. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., and Mazur, M., Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 160, 1–40 (2006).

  48. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., and Telser, J., Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39, 44–84 (2007).

Download references

Author information

Correspondence to Soon Ha Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, H.J., Koo, S.Y., Ahn, B. et al. NecroX as a novel class of mitochondrial reactive oxygen species and ONOO scavenger. Arch. Pharm. Res. 33, 1813–1823 (2010).

Download citation

Key words

  • NecroX
  • Nonapoptotic cell death
  • Oxidative stress
  • Mitochondrial
  • Reactive oxygen species and reactive nitrogen species
  • Hepatotoxicity
  • Pancreatic islets