Skip to main content
Log in

In vivo electron spin resonance: An effective new tool for reactive oxygen species/reactive nitrogen species measurement

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Reactive oxygen species are regarded as important factors in the initiation and progression of many diseases. Therefore, measurement of redox status would be helpful in understanding the “Redox Navigation” of such diseases. Because electron spin resonance (ESR) shows good signal responses to nitroxyl radical and various redox-related species, such as oxygen radicals and antioxidants, the in vivo ESR/nitroxyl probe technique can provide useful information on real-time redox status in a living body. ESR spectrometers for in vivo measurements can be operated at lower frequencies (approximately 3.5 GHz, 1 GHz, 700 MHz, and 300 MHz) than usual (9–10 GHz). Several types of resonators were also designed to minimize the dielectric loss of electromagnetic waves caused by water in animal bodies. In vivo ESR spectroscopy and its imaging have been used to analyze radical generation, redox status, partial pressure of oxygen and other conditions in various diseases. In addition, ESR has been used to analyze injury models related to oxidative stresses, such as nitroxyl radicals. The application of in vivo ESR for diseases related to oxidative injuries currently being investigated and the accumulation of basic data for therapy is ongoing. Recent progress in the instrumentation for in vivo ESR spectroscopy and its application to the life sciences are reviewed, because measurement of redox status in vivo is considered necessary to understand the initiation and progression of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmus, K. D. and Nigam, S., Kinetics of nitroxyl radical reactions. A pulse radiolysis conductivity study. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 29, 211–219 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Beinert, H., Evidence for an intermediate in the oxidationreduction of flavoproteins. J. Biol. Chem., 225, 465–478 (1957).

    CAS  PubMed  Google Scholar 

  • Belkin, S., Mehlhorn, R. J., Hideg, K., Hankovsky, O., and Packer, L., Reduction and destruction rates of nitroxide spin probes. Arch. Biochem. Biophys., 256, 232–243 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Berliner, L. J., Fujii, H., Wan, X. M., and Lukiewicz, S. J., Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn. Reson. Med., 4, 380–384 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Buettner, G. R., Spin trapping: ESR parameters of spin adducts. Free Radic. Biol. Med., 3, 259–303 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Couet, W. R., Brasch, R. C., Sosnovsky, G., and Tozer, T. N., Factors affecting nitroxide reduction in ascorbate solution and tissue homogenates. Magn. Reson. Imaging, 3, 83–88 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Feldman, A., Wildman, E., Bartolinini, G., and Piette, L. H., In vivo electron spin resonance in rats. Phys. Med. Biol., 20, 602–612 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, M., Colacicchi, S., Gualtieri, G., Santini, M. T., and Sotgiu, A., Whole mouse nitroxide free radical pharmacokinetics by low frequency electron paramagnetic resonance. Biochem. Biophys. Res. Commun., 166, 168–173 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Fielden, E. M. and Roberts, P. B., Pulse radiolysis studies of the radiosensitizer Nor-pseudopelletierine-N-oxyl (NPPN). I. Radiation chemistry. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 20, 355–362 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein, E., Rosen, G., and Rauckman, E. J., Superoxide-dependent reduction of nitroxides by thiols. Biochim. Biophys. Acta, 802, 90–98 (1984).

    CAS  Google Scholar 

  • Fuchs, J., Groth, N., Herrling, T., and Zimmer, G., Electron paramagnetic resonance studies on nitroxide radical 2,2, 5,5-tetramethyl-4-piperidin-1-oxyl (TEMPO) redox reactions in human skin. Free Radic. Biol. Med., 22, 967–976 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Fujii, H. and Berliner, L. J., One- and two-dimensional EPR imaging studies on phantoms and plant specimens. Magn. Reson. Med., 2, 275–282 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Gomi, F., Utsumi, H., Hamada, A., and Matsuo, M., Aging retards spin clearance from mouse brain and food restriction prevents its age-dependent retardation. Life Sci., 52, 2027–2033 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Halpern, H. J. and Bowman, M. K., Low-frequency EPR spectrometers: MHz range. In Eaton, G. R., Eaton, S. S., and Ohno, K. (Eds.). EPR imaging and in vivo EPR. CRC press, Inc., Boca Raton, pp. 45–63, (1991).

    Google Scholar 

  • Halliwell, B., Free Radicals in Biology and Medicine (third ed.), Oxford University Press, London, (1999).

    Google Scholar 

  • Han, J. Y., Takeshita K., and Utsumi, H., Non-invasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radic. Biol. Med., 30, 516–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  • He, G., Samouilov, A., Kuppusamy, P., and Zweier, J. L., In vivo imaging of free radicals: applications from mouse to man. Mol. Cell. Biochem., 235, 359–367 (2002).

    Article  Google Scholar 

  • He, G., Kutala, V. K., Kuppusamy, P., and Zweier, J. L., In vivo measurement and mapping of skin redox stress induced by ultraviolet light exposure. Free Radic. Biol. Med., 36, 665–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Herrling, T., Fuchs, J., Rehberg, J., and Groth, N., UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using nitroxides. Free Radic. Biol. Med., 35, 59–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Herrmann, W., Stosser, R., and Borchert, H. H., ESR imaging investigations of two-phase systems. Magn. Reson. Chem., 45, 496–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hyodo, F., Murugesan, R., Matsumoto, K., Hyodo, E., Subramanian, S., Mitchell, J. B., and Krishna, M. C., Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI. J. Magn. Reson., 190, 105–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ishida, S., Matsumoto, S., Yokoyama, H., Mori, N., Kumashiro, H., Tsuchihashi, N., Ogata, T., Yamada, M., Ono, M., and Kitajima, T., An ESR-CT imaging of the head of a living rat receiving an administration of a nitroxide radical. Magn. Reson. Imaging, 10, 109–114 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Kadiiska, M. B., Hanna, P. M., Hernandez, L., and Mason, R. P., In vivo evidence of hydroxyl radical formation after acute copper and ascorbic acid intake: electron spin resonance spin-trapping investigation. Mol. Pharmacol., 42, 723–729 (1992).

    CAS  PubMed  Google Scholar 

  • Kocherginsky, N. and Swartz, H. M., Chemical reactivity of nitroxides. In Kocherginsky, N. et al. (Eds.). Nitroxide Spin Labels: Reactions in Biology and Chemistry. CRC Press, New York, pp. 27–66, (1995).

    Google Scholar 

  • Komarov, A., Mattson, D., Jones, M. M., Singh, P. K., and Lai, C. S., In vivo spin trapping of nitric oxide in mice. Biochem. Biophys. Res. Commun., 195, 1191–1198 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Komarov, A. M., Joseph, J., and Lai, C. S., In vivo pharmacokinetics of nitroxides in mice. Biochem. Biophys. Res. Commun., 201, 1035–1042 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Krishna, M. C., Grahame, D. A., Samuni, A., Mitchell, J. B., and Russo, A., Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc. Natl. Acad. Sci. U.S.A., 89, 5537–5541 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Afeworki, M., Shankar, R. A., Coffin, D., Krishna, M. C., Hahn, S. M., Mitchell, J. B., and Zweier, J. L., In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model. Cancer Res., 58, 1562–1568 (1998).

    CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Li, H., Ilangovan, G., Cardounel, A. J., Zweier, J. L., Yamada, K., Krishna, M. C., and Mitchell, J. B., Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res., 62, 307–312 (2002).

    CAS  PubMed  Google Scholar 

  • Lai, C. S. and Komarov, A. M., Spin trapping of nitric oxide produced in vivo in septic-shock mice. FEBS Lett., 345, 120–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Lannone, A., Tomasi, A., Vannini, V., and Swartz, H. M., Metabolism of nitroxide spin labels in subcellular fraction of rat liver. I. Reduction by microsomes. Biochim. Biophys. Acta, 1034, 285–289 (1990).

    Google Scholar 

  • Lukiewicz, S. J. and Lukiewicz, S. G., In vivo ESR spectroscopy of large biological objects. Magn. Reson. Med., 1, 297–298 (1984).

    Google Scholar 

  • Mäder, K., Pharmaceutical applications of in vivo EPR. Phys. Med. Biol., 43, 1931–1935 (1998).

    Article  PubMed  Google Scholar 

  • Miura, Y., Utsumi, H., and Hamada, A., Effects of inspired oxygen concentration on in vivo redox reaction of nitroxide radicals in whole mice. Biochem. Biophys. Res. Commun., 182, 1108–1114 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Miura, Y., Anzai, K., Takahashi, S., and Ozawa, T., A novel lipophilic spin probe for the measurement of radiation damage in mouse brain using in vivo electron spin resonance (ESR). FEBS Lett., 419, 99–102 (1997a).

    Article  CAS  PubMed  Google Scholar 

  • Miura, Y., Anzai, K., Urano, S., and Ozawa, T., In vivo electron paramagnetic resonance studies on oxidative stress caused by X-irradiation in whole mice. Free Radic. Biol. Med., 23, 533–540 (1997b).

    Article  CAS  PubMed  Google Scholar 

  • Morris, S., Sosnovsky, G., Hui, B., Huber, C. O., Rao, N. U., and Swartz, H. M., Chemical and electrochemical reduction rates of cyclic nitroxides (nitroxyls). J. Pharm. Sci., 80, 149–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Phumala, N., Ide, T., and Utsumi, H., Noninvasive evaluation of in vivo free radical reactions catalyzed by iron using in vivo ESR spectroscopy. Free Radic. Biol. Med., 26, 1209–1217 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Quaresima, V., Alecci, M., Ferrari, M., and Sotgiu, A., Whole rat electron paramagnetic resonance imaging of a nitroxide free radical by a radio frequency (280 MHz) spectrometer. Biochem. Biophys. Res. Commun., 183, 829–835 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Rosen, G. M., Halpern, H. J., Brunsting, L. A., Spencer, D. P., Strauss, K. E., Bowman, M. K., and Wechsler, A. S., Direct measurement of nitroxide pharmacokinetics in isolated hearts situated in a low-frequency electron spin resonance spectrometer: implications for spin trapping and in vivo oxymetry. Proc. Natl. Acad. Sci. U.S.A., 85, 7772–7776 (1998).

    Article  Google Scholar 

  • Sano, H., Matsumoto, K., and Utsumi, H., Synthesis and imaging of blood-brain-barrier permeable nitroxyl-probes for free radical reactions in brain of living mice. Biochem. Mol. Biol. Int., 42, 641–647 (1997).

    CAS  PubMed  Google Scholar 

  • Sano, H., Naruse, M., Matsumoto, K., Oi, T., and Utsumi, H., A new nitroxyl-probe with high retention in the brain and its application for brain imaging. Free Radic. Biol. Med., 28, 959–969 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Sano, T., Umeda, F., Hashimoto, T., Nawata, H., and Utsumi, H., Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia, 41, 1355–1360 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Sotgiu, A., Mader, K., Placidi, G., Colacicchi, S., Ursini, C. L., and Alecci, M., pH-Sensitive imaging by low-frequency EPR: a model study for biological applications. Phys. Med. Biol., 43, 1921–1930 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Subczynski, W. K., Renk, G. E., Crouch, R. K., Hyde, J. S., and Kusumi, A., Oxygen diffusion-concentration product in rhodopsin as observed by a pulse ESR spin labeling method. Biophys. J., 63, 573–577 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Swartz, H. M., Khan, N., Buckey, J., Comi, R., Gould, L., Grinberg, O., Hartford, A., Hopf, H., Hou, H., Hug, E., Iwasaki, A., Lesniewski, P., Salikhov, I., and Walczak, T., Clinical applications of EPR: overview and perspectives. NMR Biomed., 17, 335–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Swartz, H. M., Iwasaki, A., Walczak, T., Demidenko, E., Salikov, I., Lesniewski, P., Starewicz, P., Schauer, D., and Romanyukha, A., Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot., 62, 293–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Swartz, H. M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Khan, N., Lesniewski, P., Thomas, J., Romanyukha, A., Schauer, D., and Starewicz, P., In vivo EPR dosimetry to quantify exposures to clinically significant doses of ionising radiation. Radiat. Prot. Dosimetry, 120, 163–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Swartz, H. M., Burke, G., Coey, M., Demidenko, E., Dong, R., Grinberg, O., Hilton, J., Iwasaki, A., Lesniewski, P., Kmiec, M., Lo, K. M., Nicolalde, R. J., Ruuge, A., Sakata, Y., Sucheta, A., Walczak, T., Williams, B. B., Mitchell, C., Romanyukha, A., and Schauer, D. A., In vivo EPR for dosimetry. Radiat. Meas., 42, 1075–1084 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Swartz, H. M., Khan, N., and Khramtsov, V. V., Use of electronparamagnetic resonance spectroscopy to evaluate the redox state in vivo. Antioxid. Redox Signal., 9, 1757–1771 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Takeshita, K., Utsumi, H., and Hamada, A., ESR measurement of radical clearance in lung of whole mouse. Biochem. Biophys. Res. Commun., 177, 874–880 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Takeshita, K., Hamada, A., and Utsumi, H., Mechanisms related to reduction of radical in mouse lung using an L-band ESR spectrometer. Free Radic. Biol. Med., 26, 951–960 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Takeshita, K., Saito, K., Ueda, J., Anzai, K., and Ozawa, T., Kinetic study on ESR signal decay of nitroxyl radicals, potent redox probes for in vivo ESR spectroscopy, caused by reactive oxygen species. Biochim. Biophys. Acta, 1573, 156–164 (2002).

    CAS  PubMed  Google Scholar 

  • Utsumi, H., Muto, E., Masuda, S., and Hamada, A., In vivo ESR measurement of free radicals in whole mice. Biochem. Biophys. Res. Commun., 172, 1342–1348 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Utsumi, H., Takeshita, K., Miura, Y., Masuda, S., and Hamada, A., In vivo EPR measurement of radical reaction in whole mice-influence of inspired oxygen and ischemiareperfusion injury on nitroxide reduction. Free Radic. Res. Commun., 19Suppl 1, S219–S225 (1993).

    CAS  PubMed  Google Scholar 

  • Utsumi, H. and Takeshita, K., In vivo ESR measurement of free radical reactions in living animals using nitroxyl probes. In Ohya-Nishiguchi, H. and Packer, L. (Eds.). Bioradicals detected by ESR Spectroscopy. Birkhauser Verlag base, Switzerland, pp. 321–334, (1995).

    Google Scholar 

  • Utsumi, H. and Yamada, K., In vivo electron spin resonance-computed tomography/nitroxyl probe technique for noninvasive analysis of oxidative injuries. Arch. Biochem. Biophys., 416, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Utsumi, H., Yamada, K., Ichikawa, K., Sakai, K., Kinoshita, Y., Matsumoto, S., and Nagai, M., Simultaneous molecular imaging of redox reactions monitored by Overhauser-enhanced MRI with 14N- and 15N-labeled nitroxyl radicals. Proc. Natl. Acad. Sci. U.S.A., 103, 1463–1468 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ueda, Y., Yokoyama, H., Nakajima, A., Ohya-Nishiguchi, H., and Kamada, H., In vivo electron spin resonance spectroscopy on signal decay of intrastriatal nitroxide radical after acute administration of haloperidol in rats. Brain Res. Bull., 51, 313–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Vanin, A. F., History and outlooks for ESR/EPR: From zavoisky to 2020. In: Proceedings of a joint Conference of the 13 th in vivo ESR/EPR Spectroscopy & Imaging and the 10 th International EPR Spin Trapping/Spin Labeling, KL-1 (2008).

  • Veselov, A., Olesen, K., Sienkiewicz, A., Shapleigh, J. P., and Scholes, C. P., Electronic structural information from Q-band ENDOR on the type 1 and type 2 copper liganding environment in wild-type and mutant forms of coppercontaining nitrite reductase. Biochemistry, 37, 6095–6105 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Willson, R. L., Reaction of triacetoneamine-N-oxyl with hydroxyl radicals. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 21, 401–403 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J. C., Wu, G., Tsai, A. L., and Gerfen, G. J., Determination of the structural environment of the tyrosyl radical in prostaglandin H2 synthase-1: A high frequency ENDOR/EPR study. J. Am. Chem. Soc., 127, 1618–1619 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Yamato, M., Egashira, T., and Utsumi, H., Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic. Biol. Med., 35, 1619–1631 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yamato, M., Shiba, T., Yamada, K., Watanabe, T., and Utsumi, H., Noninvasive assessment of the brain redox status after transient middle cerebral artery occlusion using Overhauser-enhanced magnetic resonance imaging. J. Cereb. Blood Flow Metab., 29, 1655–1664 (2009).

    Article  PubMed  Google Scholar 

  • Yokoyama, H., Itoh, O., Ogata, T., Obara, H., Ohya-Nishiguchi, H., and Kamada, H., Temporal brain imaging by a rapid scan ESR-CT system in rats receiving intraperitoneal injection of a methyl ester nitroxide radical. Magn. Reson. Imaging, 15, 1079–1084 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama, H., Lin, Y., Itoh, O., Ueda, Y., Nakajima, A., Ogata, T., Sato, T., Ohya-Nishiguchi, H., and Kamada, H., EPR imaging for in vivo analysis of the half-life of a nitroxide radical in the hippocampus and cerebral cortex of rats after epileptic seizures. Free Radic. Biol. Med., 27, 442–448 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Wan Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J.Y., Hong, J.T. & Oh, KW. In vivo electron spin resonance: An effective new tool for reactive oxygen species/reactive nitrogen species measurement. Arch. Pharm. Res. 33, 1293–1299 (2010). https://doi.org/10.1007/s12272-010-0901-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0901-2

Key words

Navigation