Abstract
The optimization of in vitro culture conditions for embryonic stem cells (ESCs) is a matter of critical importance; a prompt supply of a sufficient population of cells that retain their pluripotency capabilities must be secured in order to make possible future cell therapies. Despite a number of reports asserting that a variety of cytokines, signaling ligands, and small molecules can help in maintaining the pluripotency of ESCs, mammalian feeder cells continue to be broadly accepted as the method of choice for ESC cultures. This appears to be because mammalian feeder cells seem to produce some as-yet-unidentified factor that makes them very effective as feeder cells. In this study, we investigated wild-type p53 inducible phosphatase (Wip1), the knockdown of which increases Wnt inhibitory factor-1 expression, in its feeder functions toward mouse embryonic stem cells, lowering the effect of Wnt, one of key signaling in maintaining stemness of ESCs. For this purpose, Wip1 was stably expressed in mouse embryonic fibroblast cell line (STO) using retro-viral gene delivery system and then the function as a feeder cell was monitored either with or without leukemia inhibitory factor (LIF) in culture medium. We demonstrated that mouse embryonic stem cells grown with Wip1 expressing STO showed higher alkaline phosphatase activity and sustained Oct-4 expression level even under LIF deprivation condition compared to both control and Wip1 phosphatase activity dead mutant expressing STO. These results imply that Wip1 phosphatase activity in feeder cells is important to retain pluripotency of mouse embryonic stem cells under LIF deprivation conditions. These results indicate that genetically engineered feeder cells such as Wip1 expressing cell lines, are alternative strategy for the optimization of maintenance and expansion of mouse embryonic stem cells.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Akopian, V., Andrews, P. W., Beil, S., Benvenisty, N., Brehm, J., Christie, M., Ford, A., Fox, V., Gokhale, P. J., Healy, L., Holm, F., Hovatta, O., Knowles, B. B., Ludwig, T. E., Mckay, R. D., Miyazaki, T., Nakatsuji, N., Oh, S. K., Pera, M. F., Rossant, J., Stacey, G. N., and Suemori, H., Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev. Biol. Anim., 46, 247–258 (2010).
Bulavin, D. V., Demidov, O. N., Saito, S., Kauraniemi, P., Phillips, C., Amundson, S. A., Ambrosino, C., Sauter, G., Nebreda, A. R., Anderson, C. W., Kallioniemi, A., Fornace, A. J. Jr., and Appella, E., Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat. Genet., 31, 210–215 (2002).
Cai, L., Ye, Z., Zhou, B. Y., Mali, P., Zhou, C., and Cheng, L., Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res., 17, 62–72 (2007).
Cajanek, L., Ribeiro, D., Liste, I., Parish, C. L., Bryja, V., and Arenas, E., Wnt/beta-catenin signaling blockade promotes neuronal induction and dopaminergic differentiation in embryonic stem cells. Stem Cells, 27, 2917–2927 (2009).
Cha, H., Wang, X., Li, H., and Fornace, A. J. Jr., A functional role for p38 MAPK in modulating mitotic transit in the absence of stress. J. Biol. Chem., 282, 22984–22992 (2007).
Cha, H., Lowe, J. M., Li, H., Lee, J.-S., Belova, G. I., Bulavin, D. V., and Fornace, A. J. Jr., Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res., 70, 4112–4122 (2010).
Chase, L. G. and Firpo, M. T., Development of serum-free culture systems for human embryonic stem cells. Curr. Opin. Chem. Biol., 11, 367–372 (2007).
Chen, S., Choo, A., Chin, A., and Oh, S. K., TGF-beta2 allows pluripotent human embryonic stem cell proliferation on E6/E7 immortalized mouse embryonic fibroblasts. J. Biotechnol., 122, 341–361 (2006).
Chim, C. S., Fung, T. K., Wong, K. F., Lau, J. S., and Liang, R., Infrequent Wnt inhibitory factor-1 (Wif-1) methylation in chronic lymphocytic leukemia. Leuk. Res., 30, 1135–1139 (2006).
Choo, A., Padmanabhan, J., Chin, A., Fong, W. J., and Oh, S. K., Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. J. Biotechnol., 122, 130–141 (2006).
Dravid, G., Ye, Z., Hammond, H., Chen, G., Pyle, A., Donovan, P., Yu, X., and Cheng, L., Defining the role of Wnt/betacatenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells, 23, 1489–1501 (2005).
Fujimoto, H., Onishi, N., Kato, N., Takekawa, M., Xu, X. Z., Kosugi, A., Kondo, T., Imamura, M., Oishi, I., Yoda, A., and Minami, Y., Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ., 13, 1170–1180 (2006).
Klimanskaya, I., Rosenthal, N., and Lanza, R., Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat. Rev. Drug Discov., 7, 131–142 (2008).
Kong, X. B. and Zhang, C., Dickkopf (Dkk) 1 promotes the differentiation of mouse embryonic stem cells toward neuroectoderm. In Vitro Cell Dev. Biol. Anim., 45, 185–193 (2009).
Kristensen, D. M., Kalisz, M., and Nielsen, J. H., Cytokine signalling in embryonic stem cells. APMIS, 113, 756–772 (2005).
Kuhnert, F., Davis, C. R., Wang, H. T., Chu, P., Lee, M., Yuan, J., Nusse, R., and Kuo, C. J., Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc. Natl. Acad. Sci. U.S.A., 101, 266–271 (2004).
Le Guezennec, X. and Bulavin, D. V., WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem. Sci., 35, 109–114 (2010).
Lee, J. S., Lee, M. O., Moon, B. H., Shim, S. H., Fornace, A. J. Jr., and Cha, H. J., Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways. Stem Cells, 27, 1963–1975 (2009).
Lin, Y. C., You, L., Xu, Z., He, B., Mikami, I., Thung, E., Chou, J., Kuchenbecker, K., Kim, J., Raz, D., Yang, C. T., Chen, J. K., and Jablons, D. M., Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem. Biophys. Res. Commun., 341, 635–640 (2006).
Lu, X., Nannenga, B., and Donehower, L. A., PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev., 19, 1162–1174 (2005).
Mannello, F. and Tonti, G. A., Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement non-conditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells, 25, 1603–1609 (2007).
Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., Heike, T., and Yokota, T., STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J., 18, 4261–4269 (1999).
Matsui, Y., Zsebo, K., and Hogan, B. L., Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 70, 841–847 (1992).
Parssinen, J., Alarmo, E. L., Khan, S., Karhu, R., Vihinen, M., and Kallioniemi, A., Identification of differentially expressed genes after PPM1D silencing in breast cancer. Cancer Lett., 259, 61–70 (2008).
Raz, R., Lee, C. K., Cannizzaro, L. A., D’eustachio, P., and Levy, D. E., Essential role of STAT3 for embryonic stem cell pluripotency. Proc. Natl. Acad. Sci. U.S.A., 96, 2846–2851 (1999).
Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., Hintz, L., Nusse, R., and Weissman, I. L., A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423, 409–414 (2003).
Rossi, M., Demidov, O. N., Anderson, C. W., Appella, E., and Mazur, S. J., Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites. Nucleic Acids Res., 36, 7168–7180 (2008).
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A. H., Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med., 10, 55–63 (2004).
Shou, J., Ali-Osman, F., Multani, A. S., Pathak, S., Fedi, P., and Srivenugopal, K. S., Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene, 21, 878–889 (2002).
Shreeram, S., Demidov, O. N., Hee, W. K., Yamaguchi, H., Onishi, N., Kek, C., Timofeev, O. N., Dudgeon, C., Fornace, A. J., Anderson, C. W., Minami, Y., Appella, E., and Bulavin, D. V., Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell, 23, 757–764 (2006).
Singla, D. K., Schneider, D. J., Lewinter, M. M., and Sobel, B. E., wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem. Biophys. Res. Commun., 345, 789–795 (2006).
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147 (1998).
Ullmann, U., Gilles, C., De Rycke, M., Van De Velde, H., Sermon, K., and Liebaers, I., GSK-3-specific inhibitor-supplemented hESC medium prevents the epithelial-mesenchymal transition process and the up-regulation of matrix metalloproteinases in hESCs cultured in feeder-free conditions. Mol. Hum. Reprod., 14, 169–179 (2008).
Wang, J., Shou, J., and Chen, X., Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene, 19, 1843–1848 (2000).
Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., Wagner, E. F., Metcalf, D., Nicola, N. A., and Gough, N. M., Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 336, 684–687 (1988).
Wissmann, C., Wild, P. J., Kaiser, S., Roepcke, S., Stoehr, R., Woenckhaus, M., Kristiansen, G., Hsieh, J. C., Hofstaedter, F., Hartmann, A., Knuechel, R., Rosenthal, A., and Pilarsky, C., WIF1, a component of the Wnt pathway, is downregulated in prostate, breast, lung, and bladder cancer. J. Pathol., 201, 204–212 (2003).
Yu, E., Ahn, Y. S., Jang, S. J., Kim, M. J., Yoon, H. S., Gong, G., and Choi, J., Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers. Breast Cancer Res. Treat., 101, 269–278 (2007).
Author information
Authors and Affiliations
Corresponding author
Additional information
These authors contributed equally to this work.
Rights and permissions
About this article
Cite this article
Kim, JJ., Lee, JS., Moon, BH. et al. Wip1-expressing feeder cells retain pluripotency of co-cultured mouse embryonic stem cells under leukemia inhibitory factor-deprivated condition. Arch. Pharm. Res. 33, 1253–1260 (2010). https://doi.org/10.1007/s12272-010-0816-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12272-010-0816-y

