Skip to main content
Log in

Physicochemical characterization of artemether solid dispersions with hydrophilic carriers by freeze dried and melt methods

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Solid dispersions of artemether (ARM), a poorly soluble drug, were prepared using polyvinylpyrrolidone (PVPK25, MW 25000) and polyethyleneglycol (PEG4000, MW 4000) as excipients. These dispersions were studied by physical mixture, freeze-drying, and melting methods. They were characterized by X-ray diffraction pattern, fourier transform infrared spectrophotometry, differential scanning calorimetery, and dissolution studies. X-ray diffraction pattern revealed the complete crystalline nature of artemether, whereas physical mixtures, melt mixtures (MM), and freeze-dried solid dispersions (FDSD) of ARM-PVP and ARM-PEG showed reduced peak intensities with increased PVP/PEG content. PEG showed lower decreases in intensity than PVP preparations. Differential scanning calorimetery also confirmed this finding by showing either a small or absent endotherm. Red shifts in O-H stretching vibrations of ARM were higher in the MM of ARM-PVP than its FDSD as exhibited by fourier transform infrared spectrophotometry. The carbonyl peak of PEG was blue shifted in MM and FDSD, whereas the C=O peak of PVP was red shifted in FDSD and MM, indicating different H-bonding by PEG and PVP with ARM. The rate of dissolution (phosphate buffer at pH 4.5) was improved up to 4-fold in MM and FDSD compared to artemether, and up to 50% compared to physical mixtures. The preparation of solid dispersions influenced the rate of dissolution at various drug-carrier ratios, i.e., the dissolution order of 1:1–1:4 ratio was MM > FDSD; FDSD > MM at 1:6–1:8 ratios of both ARM-PVP and ARM-PEG; and FDSD of ARM-PEG > FDSD of ARM-PVP > MM of ARM-PEG > MM of ARM-PVP at a 1:10 ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja, N., Katare, O. P., and Singh, B., Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur. J. Pharm. Biopharm., 65, 26–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ansari, M. T. and Sunderland, V. B., Solid dispersions of dihydroartemisinin in polyvinylpyrrolidone. Arch. Pharm. Res., 31, 390–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Anshuman, A. Mahadik, A. K. R., and Paradkar, A., Stability study of amorphous Valdecoxib. Int. J. Pharm., 282, 151–162 (2004).

    Article  Google Scholar 

  • Betageri, G. V. and Makarla, K. R., Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int. J. Pharm., 126, 155–160 (1995).

    Article  CAS  Google Scholar 

  • Bhadra, D., Bhadra, S., and Jain, N. K., Pegylated Lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J. Pharm. Pharmaceut. Sci., 8, 467–482 (2005).

    CAS  Google Scholar 

  • Chawla, G. and Bansal. A., Improved dissolution of a poorly water soluble drug in solid dispersions with polymeric and non-polymeric hydrophilic additives. Acta Pharm., 58, 257–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Damian, F., Blaton, N., Naesens, L., Balzarini, J., Kinget, P., Augustijns, P., and van den Mooter, G., Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur. J. Pharm. Sci., 10, 311–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Dittgen, M., Graiser, T., Kaufmann, G., Gerecke, H., Osterwald, H., and Oettel, M., Hot spin mixing: A new technology to manufacture solid dispersions-Part 2: dienogest. Pharmazie, 50, 50–51 (1995A).

    Google Scholar 

  • Dittgen, M., Fricke, S., Gerecke, H., and Osterwald, H., Hot spin mixing: a new technology to manufacture solid dispersions-Part 3: progesterone. Pharmazie, 50, 507–508 (1995B)

    CAS  Google Scholar 

  • Dittgen, M., Fricke, S., Gerecke, H., and Osterwald, H., Hot spin mixing: A new technology to manufacture solid dispersions-Part 1: testosterone. Pharmazie, 50, 225–226 (1995C).

    CAS  Google Scholar 

  • El-Badry, E. and Fathy, M., Enhancement of the dissolution and permeation rates of meloxicam by formation of its freeze-dried solid dispersions in polyvinylpyrrolidone K-30. Drug Dev. Ind. Pharm., 32, 141–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Elizabeth, A., Mcgready, R., Proux, S., and Nosten, F., Malaria. Travel Med. Inf. Disea., 342, 1–15 (2005).

    Google Scholar 

  • Emara, L. H., Badr, R. M., and Elbary, A. A., Improving the dissolution and bioavailability of nifedipine using solid dispersions and solubilizers. Drug Dev. Ind. Pharm., 28, 795–807 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Erdemi, H. and Bozkurt, A., Synthesis and characterization of poly (vinylpyrrolidone-co-vinylphosphoric acid) copolymers. Eur. Polym. J., 40, 1925–1929 (2004).

    Article  CAS  Google Scholar 

  • Forster, J., Hempenstall, J., and Rades, T., Characterization of glass solutions of poorly water-soluble drug produced by melt extrusion with hydrophilic amorphous polymers. J. Pharm. Phamacol., 53, 303–315 (2001).

    Article  CAS  Google Scholar 

  • Gu, J., Chen, K., Jiang, H., and Ji. R., A DFT study of Artemisinin and 1,2,4-trioxane. J. Mol. Struct. Theochem., 459, 103–111 (1999).

    Article  CAS  Google Scholar 

  • Guyot, M., Fawaz, F., Bildet, J., Bonini, F., and Lagueny, A. M., Physicochemical characterization and dissolution of norfloxacin/cyclodextrins inclusion compounds and PEG solid dispersions. Int. J. Pharm., 123, 53–63 (1995).

    Article  CAS  Google Scholar 

  • Heo, M. Y., Piao, Z. Z., Kim, T. W., Cao, Q. R., Kim, A., and Lee, B. J., Effect of solubilizing and microemulsifying excipients in polyethylene glycol 6000 solid dispersion on enhanced dissolution and bioavailability of ketoconazole. Arch. Pharm. Res., 28, 604–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Horter, D. and Dressman, J. B., Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Del. Rev., 46, 75–87 (2001).

    Article  CAS  Google Scholar 

  • Hulsmann, S., Backensfeld, T., Keitel, S., and Bodmeier, R., Melt-extrusion — an alternative method for enhancing the dissolution rate of 17-â-estradiol hemihydrate. Eur. J. Pharm. Biopharm., 49, 237–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ilarduya, T. M., C. D., Martin, C., Goni, M. M., and Martinez-Oharriz, M. C., Solubilization and Interaction of Sulindac with PVP K30 in the solid state and in aqueous solution. Drug Dev. Ind. Pharm., 24, 295–300 (1998).

    Article  Google Scholar 

  • Karavas, E., Georgarakis, E., Sigalas, M., Avgoustakis, K., and Bikiaris, D., Investigation of the release mechanism of a sparingly soluble drug from solid dispersions in hydrophilic carrier based on physical state of the drug, particle size distribution and drug-polymer interactions. Eur. J. Pharm. Biopharm., 66, 334–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Khougaz, K. and Clas, S. D., Crystallization inhibition in solid dispersions of MK-0591 and polyvinylpyrrolidone polymers. J. Pharm. Sci., 89, 1325–1334 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre, G., Bindschedler, M., Ezzet, F., Schaeffer, N., Meyer, I., and Thomsen, M., Pharmacokinetic interaction trial between co-artemether and mefloquine. Eur. J. Pharm. Sci., 10, 141–151 (2000).

    Article  PubMed  Google Scholar 

  • Lin, Y. E. and Wilken, L. O., Some effects of a modified lyophilization procedure on dissolution and other properties of digoxin powders and tablets. M. S. Thesis. Auburn University, AL, pp. 63, (1980).

    Google Scholar 

  • Martinez-Oharriz, M. C., Rodriguez-Espinosa, C., Martin, C., Goni, M. M., Tros-Illarduya, M. C., and Sanchez, M., Solid dispersions of diflunisal-PVP: Polymorphic and amorphous states of the drug. Drug Dev. Ind. Pharm., 28, 717–725 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki, T., Yoshioka, S., Aso, Y., and Kojima, S., Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J. Pharm. Sci., 93, 2710–2717 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Mooter, G. V. D., Wuyts, M., Blaton, N., Busson, R., Grobet, P., August, P., and Kinget, R., Physical stabilization of amorphous ketoconazole in solid dispersions with Polyvinylpyrrolidone K25. Eur. J. Pharm. Sci., 12, 261–269 (2001).

    Article  PubMed  Google Scholar 

  • Narang, A. S. and Srivastava, A. K., Evaluation of solid dispersions of Clofazimine. Drug Dev. Ind. Pharm., 28, 1001–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rawlinson, C. F., Williams, A. C., Timmins, P., and Grimsey, I., Polymer-mediated disruption of drug crystallinity. Int. J. Pharm., 336, 42–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi, K. and Obi, N., Studies on absorption of eutectic mixtures. 1. A comparison of the behavior of eutectic mixtures of sulfathiazole and that of ordinary thiazole in man. Chem. Pharm. Bullet., 9, 866–872 (1961).

    CAS  Google Scholar 

  • Sethabouppha, B., Puttipipatkhachorn, S., Tozuka, Y., and Yamamoto, K., Amorphization of dihydroartemisinin by co-grinding with additives. Presented at the First Asian Particle Technology Symposium (APT2000), Bangkok, Thailand, 13–15, December, 2000.

  • Silverstein, R. M., Bassler, G. C., and Morril, T. C., Spectrometric identification of organic compounds. Wiley, New York, pp.91–131, (1991).

    Google Scholar 

  • Te Wierik, G. H., Eissens, A. C., Besemer, A. C., and Lerk, C. F., Preparation, characterization, and pharmaceutical application of linear dextrins. II: Complexation and dispersion of drugs with amylodextrin by freeze-drying and kneading. Pharm. Res., 10, 1280–1284 (1993).

    Article  Google Scholar 

  • Trapani, G., Franco, M., Latrofa, A., Pantaleo, M. R., Provanzano, M. R., Sanna, E., Maciocco, E., and Liso, G., Physicochemical characterization and in vivo properties of zolpidem in solid dispersions with polyethylene glycol 4000 and 6000. Int. J. Pharm., 184, 121–130 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Van Drooge, D. J., Hinrichs, W. L. J., Wegman, K. A. M., Visser, M. R., Eissens, A. C., and Frijlink, H. W., Solid dispersions based on inulin for the stabilisation and formulation of Δ9-tetrahydrocannabinol. Eur. J. Pharm. Sci., 21, 511–518 (2004).

    Article  PubMed  Google Scholar 

  • Vivekanandhan, S., Venkateswarlu, M., and Satyanarayana, N., Effect of different ethylene glycol precursors on the Pechini process for the synthesis of nano-crytalline LiNi0.5Co0.5VO4 powders. Mater. Chem. Phys., 91, 54–59 (2005).

    Article  CAS  Google Scholar 

  • Wang, L., Cui, F. D., Hayase, T., and Sunada, H., Preparation and evaluation of solid dispersions for nitrendipinecarbopol and nitrendipine-HPMCP systems using a twin screw extruder. Chem. Pharm. Bull., 53, 1240–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  • White, N., Antimalarial drug resistance and combination chemotherapy. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 354, 739–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  • White, N. J., Nosten, F., Looareesuwan, S. et al., Averting a malaria disaster. Lancet, 353, 1965–1967 (1999).

    Article  CAS  PubMed  Google Scholar 

  • WHO, Antimalarial Drug Combination Therapy. Report of a WHO Technical Consultation. (WHO/CDS/RBM/2001.35). WHO, Geneva (2001).

    Google Scholar 

  • WHO, The use of artemisinin & its derivatives as antimalarial drugs world health organization. WHO/MAL/98/1086 Geneva, Malaria Unit Division of Control of Tropical Diseases (1998).

  • WHO, Application for inclusion of artemether/lumefantrine dispersible tablets 20mg/120 mg in the WHO Model List of Essential Medicines for Children. WHO 17th Expert Committee on the Selection and Use of Essential Medicines Geneva, March (2009).

  • Zajc, N. and Srcic, S., Binary melting phase diagrams of nifedipine-PEG 4000 and nifedipine-mannitol systems. J. Therm. Anal. Calorim., 77, 571–280 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tayyab Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, M.T., Karim, S., Ranjha, N.M. et al. Physicochemical characterization of artemether solid dispersions with hydrophilic carriers by freeze dried and melt methods. Arch. Pharm. Res. 33, 901–910 (2010). https://doi.org/10.1007/s12272-010-0613-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0613-7

Key words

Navigation