Skip to main content
Log in

Comparison of ganglioside expression between human adipose- and dental pulp-derived stem cell differentiation into osteoblasts

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Human adipose-derived stem cells (hADSCs) and dental pulp-derived stem cells (hDPSCs) have been considered alternative sources of adult stem cells because of their potential to trans-differentiate into multiple cell lineages. This study investigated the possible role of gangliosides in the osteoblast differentiation of hADSCs and hDPSCs. First, we investigated characterization of hADSCs and hDPSCs using FACS analysis. Mesenchymal stem cell specific markers, CD44 and CD105, were expressed but not hematopoetic markers, CD45 and CD117 in both of hADSCs and hDPSCs. High-performance thin-layer chromatography analysis showed that increased gangliosides were associated with differentiation of hADSCs and hDPSCs into osteoblasts. RT-PCR analysis confirmed that osteoblast specific genes, ALP, BMP-2, collagen were expressed in differentiated osteoblasts, however, the another osteoblast specific gene, osteocalcin, was not expressed. When hADSCs and hDPSCs were cultured under osteoblast-differentiation conditions, alkaline phosphatase (ALP) activity was increased in comparison to hADSCs and hDPSCs. Furthermore, specifically both ALP activity and ganglioside expression increased more in hDPSCs-derived osteoblasts than hADSCs-derived osteoblasts. These results suggest that gangliosides play a more important role in regulating the osteoblast-differentiation of hDPSCs compared to hADSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., and Horwitz, E. M., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  • El-Backly, R. M., Massoud, A. G., El-Badry, A. M., Sherif, R. A., and Maarei, M. K., Regeneration of dentine/pulp-like tissue using a dental pulp stem sell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. Aust. Endod. J., 34, 52–67 (2008).

    Article  PubMed  Google Scholar 

  • Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., and Mavilio, F., Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., Shi, S., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 97, 13625–13630 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Hakomori, S., Bifunctional role of glycosphingolipids, modulators for transmembrane signaling and mediators for cellular interations. J. Biol. Chem., 265, 18713–18716 (1990).

    CAS  PubMed  Google Scholar 

  • Hakomori, S., Yamamura, S., and Handa, A. K., Signal transduction through glyco(sphingo)lipid. Introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. Ann. N. Y. Acad. Sci., 845, 1–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Hong, S. H., Gang, E. J., Jeong, J. A., Ahn, C., Hwang, S. H., Yang, I. H., Park, H. K., Han, H., and Kim, H., In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem. Biophys. Res. Commun., 330, 1153–1161 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, E., Hirose, M., Kotobuki, N., Shimaoka, H., Tadokoro, M., Maeda, M., Hayashi, Y., Kirita, T., and Ohgushi, H., Osteogenic differentiation of human dental papilla mesenchymal stem cell. Biochem. Biophys. Res. Commun., 342, 1257–1262 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kern, S., Eichler, H., Stoeve, J., Klüter, H., and Bieback, K., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. M., Jung, J. U., Ryu, J. S., Jin, J. W., Yang, H. J., Ko, K., You, H. K., Jung, K. Y., and Choo, Y. K., Effects of gangliosides on the differentiation of human mesenchymal stem cells into osteoblasts by modulating epidermal growth factor receptors. Biochem. Biophys. Res. Commun., 371, 866–871 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lee, D.H., Koo, D.B., Ko, K., Ko, K., Kim, S.M., Jung, J.U., Ryu, J.S., Jin, J.W., Yang, H.J., Do, S.I., Jung, K.Y., Choo, Y.K., Effects of daunorubicin on ganglioside expression and neuronal differentiation of mouse embryonic stem cells. Biochem. Biophys. Res. Commun., 362, 313–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liang, L., Tao, M., Wei, C., Jinling, H., Xueli, B., Junjian, L., and Tingbo, L., Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol. Res., 39, 822–832 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Li, R., and Ladisch, S., Exogenous ganglioside GD1a enhances epidermal growth factor receptor binding and dimerization. J. Biol. Chem., 279, 36481–36489 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Prescott, R. S., Alsanea, R., Fayad, M. I., Johnson, B. R., Wenckus, C. S., Hao, J., John, A. S., and George, A., In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J. Endod., 34, 421–426 (2008).

    Article  PubMed  Google Scholar 

  • Pyo, H., Jeo, E., Jung, S., Lee, S. H., and Jou, I., Gangliosides activate cultured rat brain microglia. J. Biol. Chem., 274, 34584–34589 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ryu, J. S., Ko, K., Lee, J. W., Park, S. B., Byun, S. J., Jeong, E. J., Ko, K., and Choo, Y. K., Gangliosides are involved in neural differentiation of human dental pulp-derived stem cells. Biochem. Biophys. Res. Commun., 387, 266–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T. B., Saporta, S., Janssen, W., Patel, N., Cooper, D. R., and Sanberg, P. R., Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol., 164, 247–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Araki, H., Kato, J., Nakamura, K., Kawano, Y., Kobune, M., Sato, T., Miyanishi, K., Takayama, T., Takahashi, M., Takimoto, R., Iyama, S., Matsunaga, T., Ohtani, S., Matsuura, A., Hamada, H., and Niitsu, Y., Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 106, 756–763 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Stevens, A., Zuliani, T., Olejnik, C., LeRoy, H., Obriot, H., Kerr-Conte, J., Formstecher, P., Bailliez, Y., and Polakowska, R. R., Human dental pulpstem cells differentiate into neural crest-derived melanocvtes and have label-retaining and sphere-forming abilities. Stem Cells Dev., 17, 1175–1184 (2008).

    Article  PubMed  Google Scholar 

  • Yamamoto, A., Haraguchi, M., Yamashiro, S., Fukumoto, S., Furukawa, K., Takamiya, K., Atsuta, M., and Shiku, H., Heterogeneity in the expression pattern of two ganglioside synthase genes during mouse brain development. J. Neurochem., 66, 26–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Yu, R. K., Macala, L. J., Taki, T., Weinfield, H. M., Yu, F. S., Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem., 50, 1825–1829 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Yu, R. K., Development regulation of ganglioside metabolism. Prog. Brain Res., 101, 31–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., and Cui, Z., Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct., 26, 664–675 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kug Choo.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Ryu, JS., Lee, JW. et al. Comparison of ganglioside expression between human adipose- and dental pulp-derived stem cell differentiation into osteoblasts. Arch. Pharm. Res. 33, 585–591 (2010). https://doi.org/10.1007/s12272-010-0413-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0413-0

Key words

Navigation