Skip to main content
Log in

Synergistic penetration of ethosomes and lipophilic prodrug on the transdermal delivery of acyclovir

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the lipophilic prodrug as a means of promoting acyclovir (ACV) that exhibited biphasic insolubility into the ethosomes for optimum skin delivery. Acyclovir Palmitate (ACV-C16) was synthesized as the lipophilic prodrug of ACV. The ethosomal system and the liposomal system bearing ACV or ACV-C16 were prepared, respectively. The systems were characterized for shape, zeta potential value, particle size, and entrapment efficiency. Franz diffusion cells and confocal laser scanning microscopy were used for the percutaneous absorption studies. The results showed that the entrapment efficiency of ACV-C16 ethosomes (87.75%) were much higher than that of ACV ethosomes (39.13%). The quantity of drug in the skin from ACV-C16 ethosomes at the end of the 24 h transdermal experiment (622.89 μg/cm2) was 5.30 and 3.43 times higher than that from ACV-C16 hydroalcoholic solution and ACV ethosomes, respectively. This study indicated that the binary combination of the lipophilic prodrug ACV-C16 and the ethosomes synergistically enhanced ACV absorption into the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, A., Prausnitz, M., and Mitragotri, S., Micro-scale devices for transdermal drug delivery. Int. J. Pharm., 364, 227–236 (2007).

    Article  Google Scholar 

  • Cai, Q. -S., Feng, M. -Q., and Huang, H., High yield synthesis, structure confirm of acyclovir palmitate and its role in inhibiting hepatitics in vivo. J. Med. Sci., 34, 486–490 (2007).

    CAS  Google Scholar 

  • Dayan, N. and Touitou, E., Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials, 21, 1879–1885 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Degim, I. -T., New tools and approaches for predicting skin permeability. Drug Discov Today, 11, 517–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Denet, A. -R. and Préat, V., Transdermal delivery of timolol by electroporation through human skin. J. Control. Release, 88, 253–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dubey, V., Mishra, D., and Jain, N. -K., Melatonin loaded ethanolic liposomes: Physicochemical characterization and enhanced transdermal delivery. Eur. J. Pharm. Biopharm., 67, 398–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Elsayed, M. -M., Abdallah, O. -Y., Naggar, V. -F., and Khalafallah, N. -M, Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery. Int. J. Pharm., 322, 60–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Elsayed, M. -M., Abdallah, O., and Y., Naggar, V. -F., and Khalafallah, N. -M., Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int. J. Pharm., 332, 1–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Feng, M., Cai, Q., Huang, H., and Zhou, P., Liver targeting and anti-HBV activity of reconstituted HDL-acyclovir palmitate complex. Eur. J. Pharm. Biopharm., 68, 688–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Fry, D. -W., White, J. -C., and Goldman, I. -D., Rapid separation of low molecular weight solutes from liposomes without dilution. J. Anal. Biochem., 90, 809–815 (1978).

    Article  CAS  Google Scholar 

  • Gulati, M., Grover, M., and Singh, S., Lipophilic drug derivatives in liposomes. J. Int. J. Pharm., 165, 129–168 (1998).

    Article  CAS  Google Scholar 

  • Horwitz, E., Pisanty, S., Czerninski, R., Helser, M., Eliav, E., and Touitou, E., A clinical evaluation of a novel liposomal carrier for acyclovir in the topical treatment of recurrent herpes labialis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 87, 700–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Jain, S., Tiwary, A. -K., Sapra, B., and Jain, N. -K., Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS Pharm. Sci. Tech., 8, E1–E9 (2007).

    Article  Google Scholar 

  • Law, S. -L. and Hung, H. -Y., Properties of acyclovir-containing liposomes for potential ocular delivery. Int. J. Pharm., 161, 253–259 (1998).

    Article  CAS  Google Scholar 

  • Liu, H., Tang, R., He, X. -X., and Zhang, Y., Effects of liposomes formulation and preparation method on the stability of acyclovir palmitate liposomes. Yao Xue Xue Bao, 37, 563–566 (2002).

    CAS  PubMed  Google Scholar 

  • Maestrelli, F., Capasso, G., Gonzalez-Rodriguez, M. -L., Rabasco, A. -M., Ghelardini, C., and Mura, P., Effect of preparation technique on the properties and in vivo efficacy of benzocaine-loaded ethosomes. J. Liposome Res., 4, 1–8 (2009).

    Article  Google Scholar 

  • Naik, A., Kalia, Y. -N., and Guy, R., Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technol. Today, 3, 318–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Padula, C., Sartori, F., Marra, F., and Santi, P., The influence of iontophoresis on acyclovir transport and accumulation in rabbit ear skin. Pharm. Res., 22, 1519–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Paolino, D., Lucania, G., Mardente, D., Alhaique, F., and Fresta, M., Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J. Control. Release, 106, 99–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Paveliæ, Z., Skalko, B. -N., Filipoviæ, G. -J., Martinac, A., and Jalsenjak, I., Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J. Control. Release, 106, 34–43 (2005).

    Article  Google Scholar 

  • Prausnitz, M. -R., A practical assessment of transdermal drug delivery by skin electroporation. Adv. Drug Deliv. Rev., 35, 61–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, E. -N., Weisman, G., and Vidaver, G. -A., A Sephadex column for measuring uptake and loss of low molecular weight solutes from small vesicles. Anal. Biochem, 82, 376–384 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Touitou, E., Dayan, N., Bergelson, L., Godin, B., and Eliaz, M., Ethosomes-novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 65, 403–418 (2000a).

    Article  CAS  PubMed  Google Scholar 

  • Touitou, E., Godin, B., and Weiss, C., Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res., 50, 406–415 (2000b).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-An Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Wei, YH., Zhang, GQ. et al. Synergistic penetration of ethosomes and lipophilic prodrug on the transdermal delivery of acyclovir. Arch. Pharm. Res. 33, 567–574 (2010). https://doi.org/10.1007/s12272-010-0411-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0411-2

Key words

Navigation