Advertisement

Archives of Pharmacal Research

, Volume 33, Issue 2, pp 309–316 | Cite as

Assessment of the anti-angiogenic, anti-inflammatory and antinociceptive properties of ethyl vanillin

  • Hyun-Joo Jung
  • Yun Seon Song
  • Kyunghoon Kim
  • Chang-Jin LimEmail author
  • Eun-Hee ParkEmail author
Research Articles Drug Actions

Abstract

The present work aimed to assess novel pharmacological properties of ethyl vanillin (EVA) which is used as a flavoring agent for cakes, dessert, confectionary, etc. EVA exhibited an inhibitory activity in the chorioallantoic membrane angiogenesis. Anti-inflammatory activity of EVA was convinced using the two in vivo models, such as vascular permeability and air pouch models in mice. Antinociceptive activity of EVA was assessed using acetic acid-induced writhing model in mice. EVA suppressed production of nitric oxide and induction of inducible nitric oxide synthase in the lipopolysaccharide (LPS)-activated RAW264.7 macrophage cells. However, EVA could not suppress induction of cyclooxygenase-2 in the LPS-activated macrophages. EVA diminished reactive oxygen species level in the LPS-activated macrophages. EVA also suppressed enhanced matrix metalloproteinase-9 gelatinolytic activity in the LPSactivated RAW264.7 macrophage cells. EVA at the used concentrations couldn’t diminish viability of the macrophage cells. Taken together, the anti-angiogenic, anti-inflammatory and anti-nociceptive properties of EVA are based on its suppressive effect on the production of nitric oxide possibly via decreasing the reactive oxygen species level.

Key words

Anti-angiogenic Anti-inflammatory Antinociceptive Ethyl vanillin Nitric oxide Reactive oxygen species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bubici, C., Papa, S., Dean, K., and Franzoso, G., Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene, 25, 6731–6748 (2006).CrossRefPubMedGoogle Scholar
  2. Cuzzocrea, S., Role of nitric oxide and reactive oxygen species in arthritis. Curr. Pharm. Des., 12, 3551–3570 (2006).CrossRefPubMedGoogle Scholar
  3. Freshney, R. I., Culture of animal cells: a manual of basic technique. 4th ed. Wiley-Liss Press, New York, pp. 336–338, (1994).Google Scholar
  4. Ghosh, A. K., Hirasawa, N., Niki, H., and Ohuchi, K., Cyclooxygenase-2-mediated angiogenesis in carrageenan-induced granulation tissue in rats. J. Pharmacol. Exp. Ther., 295, 802–809 (2000).PubMedGoogle Scholar
  5. Griffioen, A. W. and Molema, G., Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol. Rev., 52, 237–268 (2000).PubMedGoogle Scholar
  6. Gustafson, D. L., Franz, H. R., Ueno, A. M., Smith, C. J., Doolittle, D. J., and Walden, C. A., Vanillin (3-methoxy-4-hydroxybenzaldehyde) inhibits mutation induced by hydrogen peroxide, N-methyl-N-nitrosoguanidine and mitomycin C but not 137Cs gamma radiation at the CD59 locus in human-hamster hybrid A(L) cells. Mutagenesis, 15, 207–213 (2000).CrossRefPubMedGoogle Scholar
  7. Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamaru, T., Brem, H., and Folkman, J., Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature, 348, 555–557 (1990).CrossRefPubMedGoogle Scholar
  8. Iurlaro, M., Benelli, R., Masiello, L., Rosso, M., Santi, L., and Albini, A., Beta interferon inhibits HIV-1 Tat-induced angiogenesis: synergism with 13-cis retinoic acid. Eur. J. Cancer, 34, 570–576 (1998).CrossRefPubMedGoogle Scholar
  9. Kamat, J. P., Ghosh, A., and Devasagayam, T. P. A., Vanillin as an antioxidant in rat lever mitochondria: Inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol. Cell. Biochem., 209, 47–53 (2000).CrossRefPubMedGoogle Scholar
  10. Kleiner, D. E. and Stetler-Stevenson, W. G., Quantitative zymography: detection of picogram quantities of gelatinases. Anal. Biochem., 218, 325–329 (1994).CrossRefPubMedGoogle Scholar
  11. Kumar, S. S., Priyadarsini, K. I., and Sainis, K. B., Inhibition of peroxynitrite-mediated reactions by vanillin. J. Agric. Food Chem., 52, 139–145 (2004).CrossRefPubMedGoogle Scholar
  12. Lee, J. Y., Jang, Y. W., Kang, H. S., Moon, H., Sim, S. S., and Kim, C.-J., Anti-inflammatory action of phenolic compounds from Gastrodia elata root. Arch. Pharm. Res., 29, 849–858 (2006).CrossRefPubMedGoogle Scholar
  13. Lim, E. J., Kang, H. J., Jung, H. J., and Park, E. H., Antiangiogenic, anti-inflammatory and anti-nociceptive activity of 4-hydroxybenzyl alcohol. J. Pharm. Pharmacol., 59, 1235–1240 (2007).CrossRefPubMedGoogle Scholar
  14. Lirdprapamongkol, K., Sakurai, H., Kawasaki, N., Choo, M. K., Saitoh, Y., Aozuka, Y., Singhirunnusorn, P., Ruchirawat, S., Svasti, J., and Saiki, I., Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur. J. Pharm. Sci., 25, 57–65 (2005).CrossRefPubMedGoogle Scholar
  15. Mamer, O. A., Montgomery, J. A., Deckelbaum, R. J., and Granot, E., Identification of urinary 3-ethoxy-4-hydroxybenzoic and 3-ethoxy-4-hydroxymandelic acids after dietary intake of ethyl vanillin. Biomed. Mass Spectrom., 12, 163–169 (1985).CrossRefPubMedGoogle Scholar
  16. Mott, J. D. and Werb, Z., Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol., 16, 558–564 (2004).CrossRefPubMedGoogle Scholar
  17. Nordberg, J. and Arner, E. S., Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 31, 1287–1312 (2001).CrossRefPubMedGoogle Scholar
  18. Ojemann, L. M., Nelson, W. L., Shin, D. S., Rowe, A. O., and Buchanan, R. A., Tien ma, an ancient Chinese herb, offers new options for the treatment of epilepsy and other conditions. Epilepsy Behav., 8, 376–383 (2006).CrossRefPubMedGoogle Scholar
  19. Olajide, O. A., Awe, S. O., Makinde, J. M., Ekhelar, A. I., Olusola, A., Morebise, O., and Okpako, D. T., Studies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem bark. J. Ethnopharmacol., 71, 179–186 (2000).CrossRefPubMedGoogle Scholar
  20. Royall, J. A. and Ischiropoulos, H., Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys., 302, 348–355 (1993).CrossRefPubMedGoogle Scholar
  21. Sherman, M. P., Aeberhard, E. E., Wong, V. Z., Griscavage, J. M., and Ignarro, L. J., Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun., 191, 1301–1308 (1993).CrossRefPubMedGoogle Scholar
  22. Singh, V. K., Mehrotra, S., Narayan, P., Pandey, C. M., and Agarwal, S. S., Modulation of autoimmune diseases by nitric oxide. Immunol. Res., 22, 1–19 (2000).CrossRefPubMedGoogle Scholar
  23. Song, Y. S., Kim, S. H., Sa, J. H., Jin, C., Lim, C. J., and Park, E. H., Anti-angiogenic and inhibitory activity on inducible nitric oxide production of the mushroom Ganoderma lucidum. J. Ethnopharmacol., 90, 17–20 (2004).CrossRefPubMedGoogle Scholar
  24. Sorsa, T., Tjäderhane, L., Konttinen, Y. T., Lauhio, A., Salo, T., Lee, H.-M., Golub, L. M., Brown, D. L., and Mäntylä, P., Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med., 38, 306–321 (2006).CrossRefPubMedGoogle Scholar
  25. Tamargo, R. J., Bok, R. A., and Brem, H., Angiogenesis inhibition by minocycline. Cancer Res., 51, 672–675 (1991).PubMedGoogle Scholar
  26. Tong, Y., Zhang, X., Zhao, W., Zhang, Y., Lang, J., Shi, Y., Tan, W., Li, M., Zhang, Y., Tong, L., Lu, H., Lin, L., and Ding, J., Anti-angiogenic effects of shiraiachrome A, a compound isolated from a Chinese folk medicine used to treat rheumatoid arthritis. Eur. J. Pharmacol., 494, 101–109 (2004).CrossRefPubMedGoogle Scholar
  27. Vogel, H. G. and Vogel, W. H., Drug Discovery and Evaluations, Pharmacological Assays. Springer, Berlin, pp. 402–403, (1997).Google Scholar
  28. Whittle, B. A., The use of changes in capillary permeability in mice to distinguish between narcotic and nonnarcotic analgesics. Br. J. Pharmacol. Chemother., 22, 246–253 (1964).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Brain Korea 21 Project for Medical Science, Department of AnatomyYonsei University College of MedicineSeoulKorea
  2. 2.College of PharmacySookmyung Women’s UniversitySeoulKorea
  3. 3.Division of Life Sciences and Research Institute of Life SciencesKangwon National UniversityChuncheonKorea
  4. 4.Division of Life Sciences, College of Natural SciencesKangwon National UniversityChuncheonKorea

Personalised recommendations