Archives of Pharmacal Research

, Volume 33, Issue 2, pp 275–284 | Cite as

LSKL, a peptide antagonist of thrombospondin-1, attenuates renal interstitial fibrosis in rats with unilateral ureteral obstruction

  • Xi-sheng Xie
  • Fei-yan Li
  • Heng-chuan Liu
  • Yao Deng
  • Zi Li
  • Jun-ming Fan
Research Articles Drug Actions


The effects of LSKL, the peptide antagonist of thrombospondin-1 (TSP-1), on renal interstitial fibrosis in rats subjected to unilateral ureteral obstruction (UUO) were investigated. Rats were divided randomly into three groups (n = 20 each): UUO group, sham-operation group and UUO plus LSKL treatment group. Collagen deposition was studied using histopathology and reverse transcription polymerase chain reaction analysis (RT-PCR). TSP-1, transforming growth factor beta 1 (TGF-β1), phosphorylated Smad2 (pSsmad2) and α-smooth muscle actin (α-SMA) in the kidney were measured using immunocytochemistry, western blotting analysis, RT-PCR and enzyme-linked immunosorbent assay. Biochemical analyses in the serum and urine were made. Histopathology showed severe tubular dilatation and atrophy, interstitial inflammation and collagen accumulation after surgery and LSKL significantly inhibited interstitial fibrosis including tubular injury as well as collagen deposition. The protein and mRNA levels of TSP-1 increased notably at different time point and significantly decreased in the presence of LSKL. The expression of TGF-β1 and pSmad2 were upregulated in the obstructed kidney and substantially suppressed by LSKL treatment. Myofibroblast accumulation could be alleviated after administration of LSKL. Biochemical parameters did not show differences among the three groups. As TSP-1 is the major activator of TGF-β1, we demonstrate that LSKL can attenuate renal interstitial fibrosis in vivo by preventing TSP-1-mediated TGF-β1 activation.

Key words

LSKL Renal interstitial fibrosis Transforming growth factor-β1 Thrombospondin-1 Myofibroblast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, M., Oda, N., Sato, Y., Shibata, K., and Yamasaki, M., Augmented binding and activation of latent transforming growth factor-beta by a tryptic fragment of latency associated peptide. Endothelium, 9, 25–36 (2002).CrossRefPubMedGoogle Scholar
  2. Armstrong, L. C. and Bornstein, P., Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol., 22, 63–71 (2003).CrossRefPubMedGoogle Scholar
  3. Border, W. A. and Noble, N. A., Transforming growth factor-β in tissue fibrosis. N. Engl. J. Med., 331, 1286–1292 (1994).CrossRefPubMedGoogle Scholar
  4. Daniel, C., Takabatake, Y., Mizui, M., Isaka, Y., Kawashi, H., Rupprecht, H., Imai, E., and Hugo, C., Antisense oligonucleotides against thrombospondin-1 inhibit activation of TGF-beta in fibrotic renal disease in the rat in vivo. Am. J. Pathol., 163, 1185–1192 (2003).PubMedGoogle Scholar
  5. Daniel, C., Wiede, J., Krutzsch, H. C., Ribeiro, S. M., Roberts, D. D., Murphy-Ullrich, J. E., and Hugo, C., Thrombospondin-1 is a major activator of TGF-beta in fibrotic renal disease in the rat in vivo. Kidney Int., 65, 459–468 (2004).CrossRefPubMedGoogle Scholar
  6. Fan, J. M., Ng, Y. Y., Hill, P. A., Nikolic-Paterson, D. J., Mu, W., Atkins, R. C., and Lan, H. Y., Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int., 56, 1455–1467 (1999).CrossRefPubMedGoogle Scholar
  7. Fu, P., Liu, F., Su, S., Wang, W., Huang, X. R., Entman, M. L., Schwartz, R. J., Wei, L., and Lan, H. Y., Signaling mechanism of renal fibrosis in unilateral ureteral obstructive kidney disease in ROCK1 knockout mice. J. Am. Soc. Nephrol., 17, 3105–3114 (2006).CrossRefPubMedGoogle Scholar
  8. Guo, G., Morrissey, J., McCracken, R., Tolley, T., Liapis, H., and Klahr, S., Contributions of angiotensin II and tumor necrosis factor-alpha to the development of renal fibrosis. Am. J. Physiol. Renal Physiol., 280, F777–F785 (2001).PubMedGoogle Scholar
  9. Hiroki, K., Sotaro, M., and Yuri, E., A blocking peptide for transforming growth factor-β1 activation prevents hepatic fibrosis in vivo. J. Hepatol., 39, 742–748 (2003).CrossRefGoogle Scholar
  10. Hugo, C., Shankland, S. J., Pichler, R., Couser, W. G., and Johnson, R. J., Thrombospondin-1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat. Kidney Int., 53, 302–311 (1998).CrossRefPubMedGoogle Scholar
  11. Hugo, C., Kang, D. H., and Johnson, R. J., Sustained expression of thrombospondin-1 is associated with the development of glomerular and tubulointerstitial fibrosis in the remnant kidney model. Nephron, 90, 460–470 (2002).CrossRefPubMedGoogle Scholar
  12. Hugo, C., The thrombospondin 1-TGF-beta axis in fibrotic renal disease. Nephrol. Dial. Transplant., 18, 1241–1245 (2003).CrossRefPubMedGoogle Scholar
  13. Jack, L., The functions of thrombospondin-1 and -2. Curr. Opin. Cell Biol., 12, 634–640 (2000).CrossRefGoogle Scholar
  14. Joanne, E. M.-U. and Maria, P., Activation of latent TGF-β by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev., 11, 59–69 (2000).CrossRefGoogle Scholar
  15. Liu, Y., Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol., 15, 1–12 (2004).CrossRefPubMedGoogle Scholar
  16. Liu, Y., Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int., 69, 213–217 (2006).CrossRefPubMedGoogle Scholar
  17. Massague, J., TGF-beta signal transduction. Annu. Rev. Biochem., 67, 753–91 (1998).CrossRefPubMedGoogle Scholar
  18. Michael, Z. and Raghu, K., The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med., 82, 175–181 (2004).CrossRefGoogle Scholar
  19. Mizuguchi, Y., Miyajima, A., Kosaka, T., Asano, T., Asano, T., and Hayakawa, M., Atorvastatin ameliorates renal tissue damage in unilateral ureteral obstruction. J. Urol., 172, 2456–2459 (2004).CrossRefPubMedGoogle Scholar
  20. Morrissey, J. J. and Klahr, S., Differential effects of ACE and AT1 receptor inhibition on chemoattractant and adhesion molecule synthesis. Am. J. Physiol., 274, F580–F586 (1998).PubMedGoogle Scholar
  21. Munger, J. S., Harpel, J. G., Gleizes, P. E., Mazzieri, R., Nunes, I., and Rifkin, D. B., Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int., 51, 1376–1382 (1997).CrossRefPubMedGoogle Scholar
  22. Nakagawa, T., Li, J. H., Garcia, G., Mu, W., Piek, E., Bottinger, E. P., Chen, Y., Zhu, H. J., Kang, D. H., Schreiner, G. F., Lan, H. Y., and Johnson, R. J., TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int., 66, 605–613 (2004).CrossRefPubMedGoogle Scholar
  23. Nath, K. A., The tubulointerstitium in progressive renal disease. Kidney Int., 54, 992–994 (1998).CrossRefPubMedGoogle Scholar
  24. Ribeiro, S. M. F., Poczatek, M., Schultz-Cherry, S., Villain, M., and Murphy-Ullrich, J. E. M., The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-β. J. Biol. Chem., 274, 13586–13593 (1999).CrossRefPubMedGoogle Scholar
  25. Sharma, K. and Ziyadeh, F. N., The emerging role of transforming growth factor-β in kidney disease. Am. J. Physiol., 35, F829–842 (1994).Google Scholar
  26. Shinya, M., Kunio, M., and Toshikazu, N., Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy. Kidney Int., 59, 1304–1314 (2001).CrossRefGoogle Scholar
  27. Sime, P. J., Xing, Z., Graham, F. L., Csaky, K. G., and Gauldie, J., Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest., 100, 768–776 (1997).CrossRefPubMedGoogle Scholar
  28. Souad, B., Juan, B., and Chih-Chang, W., A Thrombospondin-1 antagonist of transforming growth factor-β activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am. J. Pathol., 171, 777–789 (2007).CrossRefGoogle Scholar
  29. Wang, W., Koka, V., Lan, and H. Y., Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology, 10, 48–56 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Xi-sheng Xie
    • 1
  • Fei-yan Li
    • 2
  • Heng-chuan Liu
    • 3
  • Yao Deng
    • 1
  • Zi Li
    • 1
  • Jun-ming Fan
    • 1
  1. 1.Department of NephrologyWest China Hospital of Sichuan UniversityWuhou, ChengduChina
  2. 2.Department of Respiratory MedicineThe First Affiliated Hospital of Medical College of Xi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Medicine Technology, West China School of Public HealthSichuan UniversityWuhou, ChengduChina

Personalised recommendations