Skip to main content
Log in

Inhibitory activity of diacylglycerol acyltransferase by glabrol isolated from the roots of licorice

  • Research Articles
  • Drug Discovery and Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Acyl-coenzyme A: diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes triglyceride synthesis in the glycerol phosphate pathway. It has relations with the excess supply and accumulation of triglycerides. Therefore, DGAT inhibitors may act as a potential therapy for obesity and type 2 diabetes. Five flavonoids were isolated from the ethanol extracts of licorice roots, using an in vitro DGAT inhibitory assay. One isoprenyl flavonoid showed most potential inhibition of DGAT on five flavonoids (15). On the basis of spectral evidences, the compound was identified as glabrol (5). Compound 5 inhibited rat liver microsomal DGAT activity with an IC50 value of 8.0 µM, but the IC50 value for four flavonoids (14) was more than 100 µM. In addition, glabrol showed a noncompetitive type of inhibition against DGAT. These data suggest that potential therapy for the treatment in obesity and type 2 diabetes patients by licorice roots might be related with its DGAT inhibitory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alice, F. M., Ming, C., Kurt, F., Soren, B. C., and Arsalan, K., In vitro anti-mycobacterial and antilegionella activity of licochalcone A from Chinese licorice roots. Planta Med., 68, 416–419 (2002).

    Article  Google Scholar 

  • Cases, S., Smith, S. J., Zheng, Y. W., Myers, H. M., Lear, S. R., Sande, E., Novak, S., Collins, C., Welch, C. B., Lusis, A. J., Erikson, S. K., and Farese, R. V. Jr., Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl. Acad. Sci. U.S.A., 95, 13018–13023 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. C., Smith, S. J., Ladha, Z., Jenson, D. R., Ferreira, L. D., Pulawa, L. K., McGuire, J. G., Pitas, R. E., Eckel, R. H., and Farese, R. V. Jr., Increased insulin and leptin sensitivity in mice lacking acyl CoA: Diacylglycerol acyltransferase 1. J. Clin. Invest., 109, 1049–1055 (2002).

    PubMed  CAS  Google Scholar 

  • Chung, M. Y., Rho, M., Ko, J. S., Ryu, S. Y., Jeune, K. H., Kim, K., Lee, H. S., and Kim, Y. K., In vitro inhibition of diacylglycerol acyltransferase by prenylflavonoids from Sophora flavescens. Planta Med., 70, 258–260 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chung, M. Y., Rho, M., Lee, S. W., Park, H. R., Kim, K., Lee, I. H., Kim, D. H., Jeune, K. H., Lee, H. S., and Kim, Y. K., Inhibition of diacylglycerol acyltransferase by betulinic acid from Alnus hirsuta. Planta Med., 72, 267–269 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Coleman, R. A., Diacylglycerol acyltransferase and mono acyl glycerol acyltransferase from liver and intestine. Meth. Enzymol., 209, 98–103 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Coleman, R. and Bell, R. M., Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J. Biol. Chem., 251, 4537–4543 (1976).

    PubMed  CAS  Google Scholar 

  • Fu, B., Li, H., Wang, X., Lee, F. S., and Cui, S., Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J. Agric. Food. Chem., 53, 7408–7414 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, B., Buch, S., Vaya, J., Belinky, P. A., Coleman, R., Hayek, T., and Aviram, M., Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr., 66, 267–275 (1997).

    PubMed  CAS  Google Scholar 

  • Fuhrman, B., Volkova, N., Kaplan, M., Presser, D., Attias, J., Hayek, T., and Aviram, M., Anti-atherosclerotic effects of licorice extract supplementation on hypercholesterolemic patients: increased resistance of LDL to atherogenic modifications, reduced plasma lipid levels, and decreased systolic blood pressure. Nutrition, 18, 268–273 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Haagsman, H. P. and Van Golde, L. M., Synthesis and secretion of very low density lipoproteins by isolated rat hepatocytes in suspension: Role of diacylglycerol acyltransferase. Arch. Biochem. Biophys., 208, 395–402 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Ko, J. S., Rho, M. C., Chung, M. Y., Song, H. Y., Kang, J. S., Kim, K. H., Lee, H. S., and Kim, Y. K., Quinolone alkaloids, diacylglycerol acyltransferase inhibitors form the fruits of Evodia rutaecarpa. Planta Med., 68, 1131–1133 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. W., Kim, K., Rho, M. C., Chung, M. Y., Kim, Y. H., Lee, S., Lee, H. S., Kim, Y. K., New polycaetylenes, DGAT inhibitors from the roots of Panax ginseng. Planta Med., 70, 197–200 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Lehner, R., Kuksis, A., Biosynthesis of tri acyl glycerols. Prog. Lipid Res., 35, 169–201 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., He, J. X., Nagai, H., Tani, T., and Akao, T., Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine. Biol. Pharm. Bull., 30, 145–149 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, T., Kinoshita, T., and Shibata, S., New Isoflavan and flavanone from Licorice root. Chem. Pharm. Bull., 24, 752–755 (1976).

    CAS  Google Scholar 

  • Smith, S. J., Cases, S., Jenson, D. R., Chen, H. C., Sande, E., Tow, B., Sanan, D. A., Raber, J., Eckel, R. H., and Farese, R. V. Jr., Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat. Genet., 25, 87–90 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Tsutomu, N., Akira, I., Kazuko, K., and Kaisuke, Y., Flavonoid glycosides of the roots of Glycyrrhiza uralensis. Phytochemistry, 24, 339–341 (1985).

    Article  Google Scholar 

  • Wong, E. and Francis, C. M., Flavonoids in genotypes of Trifolium subterraneum — I: The normal flavonoid pattern of the Geraldton variety. Phytochemistry, 7, 2123–2129 (1968).

    Article  CAS  Google Scholar 

  • Yu, Y. and Ginsberg, H., The role of acyl-CoA: Diacylglycerol acyltransferase (DGAT) in energy metabolism. Annu. Rev. Med., 36, 252–261 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Kook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.H., Choi, J.N., Lee, S.Y. et al. Inhibitory activity of diacylglycerol acyltransferase by glabrol isolated from the roots of licorice. Arch. Pharm. Res. 33, 237–242 (2010). https://doi.org/10.1007/s12272-010-0208-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0208-3

Key words

Navigation