Skip to main content
Log in

Maintenance of the viral episome is essential for the cell survival of an Epstein-Barr virus positive gastric carcinoma cell line

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

While Epstein Barr virus (EBV) is associated with about 10% of gastric carcinomas worldwide, the role of the virus in the tumorigenesis of EBV-associated gastric carcinoma (EBVaGC) is unclear. Previously, we reported that a gastric cancer cell line, SNU-719, that is naturally infected with EBV closely resembles EBVaGC. Here, we attempted to eliminate the EBV genome from SNU-719 cells to ascertain the influence of EBV in EBVaGC. Southern blotting and fluorescence in situ hybridization (FISH) showed that EBV genomes were maintained as episomes in SNU-719 cells. To remove EBV episomes, SNU-719 cells were first cultured in a hydroxyurea (HU)-containing medium for up to 6 months. Real-time polymerase chain reaction and FISH results revealed no evidence of HU-mediated EBV genome reduction, although cell growth was reduced by acute HU treatment in dose- and time-dependent manners. Two small interfering RNAs against Epstein Barr nuclear antigen 1 (EBNA1) abrogated over 90% of the ectopic EBNA1 expression in HeLa cells, but only 40% of endogenous EBNA1 expression in SNU-719 cells. Together, our data suggest that maintenance of latent EBV infection is essential for the viability of EBVaGC cells, avoiding elimination of EBV episomes from the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burke, A. P., Yen, T. S., Shekitka, K. M., and Sobin, L. H., Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod. Pathol., 3, 370–380 (1990).

    Google Scholar 

  • Butz, K., Ristriani, T., Hengstermann, A., Denk, C., Scheffner, M., and Hoppe-Seyler, F., siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene, 22, 5938–5945 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Chodosh, J., Holder, V. P., Gan, Y. J., Belgaumi, A., Sample, J., and Sixbey, J. W., Eradication of latent Epstein-Barr virus by hydroxyurea alters the growthtransformed cell phenotype. J. Infect. Dis., 177, 1194–1201 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A., Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol., 4, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Luo, X., Tang, K., Li, X., Li, G., Epstein-Barr virus integrates frequently into chromosome 4q, 2q, 1q and 7q of Burkitt’s lymphoma cell line (Raji). J. Virol. Methods, 136, 193–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gräslund, A., Ehrenberg, A., and Thelander, L., Characterization of the free radical of mammalian ribonucleotide reductase. J. Biol. Chem., 257, 5711–5715 (1982).

    PubMed  Google Scholar 

  • Gulley, M. L., Raphael, M., Lutz, C. T., Ross, D. W., and Raab-Traub, N., Epstein-Barr virus integration in human lymphomas and lymphoid cell lines. Cancer, 70, 185–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Hall, A. H. and Alexander, K. A., RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J. Virol., 77, 6066–6069 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Heller, M., Flemington, E., Kieff, E., and Deininger, P., Repeat arrays in cellular DNA related to the Epstein-Barr virus IR3 repeat. Mol. Cell Biol., 5, 457–465 (1985).

    CAS  PubMed  Google Scholar 

  • Hong, M., Murai, Y., Kutsuna, T., Takahashi, H., Nomoto, K., Cheng, C. M., Ishizawa, S., Zhao, Q. L., Ogawa, R., Harmon, B. V., Tsuneyama, K., and Takano, Y., Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt’s lymphoma cells. J. Cancer Res. Clin. Oncol., 132, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ian, M. X., Lan, S. Z., Cheng, Z. F., Dan, H., and Qiong, L. H., Suppression of EBNA1 expression inhibits growth of EBV-positive NK/T cell lymphoma cells. Cancer Biol. Ther., 7, 1602–1606 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Jiang, R., Kanamori, M., Satoh, Y., Fukuda, M., Ikuta, K., Murakami, M., and Sairenji, T., Contrasting effects of hydroxyurea on cell growth and reduction in Epstein-Barr virus genomes in EBV-infected epithelioid cell lines vs Burkitt’s lymphoma cell lines. J. Med. Virol., 70, 244–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jiang, R., Zhang, J. L., Satoh, Y., and Sairenji, T., Mechanism for induction of hydroxyurea resistance and loss of latent EBV genome in hydroxyurea-treated Burkitt’s lymphoma cell line Raji. J. Med. Virol., 73, 589–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kawa, K., Epstein-Barr virus-associated diseases in humans. Int. J. Hematol., 71, 108–117 (2000).

    CAS  PubMed  Google Scholar 

  • Komano, J., Sugiura, M., and Takada, K., Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt’s lymphoma cell line Akata. J. Virol., 72, 9150–9156 (1998).

    CAS  Google Scholar 

  • Lawrence, J. B., Villnave, C. A., and Singer, R. H., Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell, 52, 51–61 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. A., Diamond, M. E., and Yates, J. L., Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. J. Virol., 73, 2974–2982 (1999).

    CAS  PubMed  Google Scholar 

  • Li, X. P., Li, G., Peng, Y., Kung, H. F., Lin, M. C., Suppression of Epstein-Barr virus-encoded latent membrane protein-1 by RNA interference inhibits the metastatic potential of nasopharyngeal carcinoma cells. Biochem Biophys Res Commun., 315, 212–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, H. T., Grady, W., Suriano, G., and Huntsman, D., Gastric cancer: new genetic developments. J. Surg. Oncol., 90, 114–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Matsuo, T., Heller, M., Petti, L., O’shiro, E., and Kieff, E., Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science, 226, 1322–1325 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Mettlin, C., Levels of epidemiologic proof in studies of diet and cancer with special reference to dietary fat and vitamin A. Prog. Clin. Biol. Res., 259, 149–159 (1998).

    Google Scholar 

  • Oh, S. T., Seo, J. S., Moon, U. Y., Kang, K. H., Shin, D. J., Yoon, S. K., Kim, W. H., Park, J. G., and Lee, S. K., A naturally derived gastric cancer cell line shows latency I Epstein-Barr virus infection closely resembling EBV-associated gastric cancer. Virology, 320, 330–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Oh, S. T., Cha, J. H., Shin, D. J., Yoon, S. K., and Lee, S. K., Establishment and characterization of an in vivo model for Epstein-Barr virus positive gastric carcinoma. J. Med. Virol., 79, 1343–1348 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Okano, M. and Gross, T. G., A review of Epstein-Barr virus infection in patients with immunodeficiency disorders. Am. J. Med. Sci., 319, 392–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Park, J. G., Yang, H. K., Kim. W. H., Chung. J. K., Kang, M. S., Lee, J. H., Oh, J. H., Park, H. S., Yeo, K. S., Kang, S. H., Song, S. Y., Kang. Y. K., Bang, Y. J., Kim, Y. H., and Kim, J. P., Establishment and characterization of human gastric carcinoma cell lines. Int. J. Cancer, 70, 443–449 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Rickinson, A. B. and Kieff, E., Epstein-Barr virus. In “Virology” Lippincott Williams & Wilkins, Philadelphia (1996).

    Google Scholar 

  • Shibata, D. and Weiss, L. M., Epstein-Barr virus-associated gastric adenocarcinoma. Am. J. Pathol., 140, 769–774 (1992).

    CAS  PubMed  Google Scholar 

  • Shimizu, N., Tanabe-Tochikura, A., Kuroiwa, Y., and Takada, K., Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt’s lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J. Virol., 68, 6069–6073 (1994).

    CAS  PubMed  Google Scholar 

  • Slobod, K. S., Taylor, G. H., Sandlund, J. T., Furth, P., Helton, K. J., and Sixbey, J. W., Epstein-Barr virus-targeted therapy for AIDS-related primary lymphoma of the central nervous system. Lancet, 356, 1493–1494 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Takada, K., Epstein-Barr virus and gastric carcinoma. Mol. Pathol., 53, 255–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  • van Beek, J., zur Hausen, A., Kranenbarg, E. K., Warring, R. J., Bloemena, E., Craanen, M. E., van de Velde, C. J., Middeldrop, J. M., Meijer, C. J., and van den Brule, A. J., A rapid and reliable enzyme immunoassay PCR-based screening method to identify EBV-carrying gastric carcinomas. Mod. Pathol., 15, 870–877 (2002).

    Article  PubMed  Google Scholar 

  • Yin, Q. and Flemington, E. K., siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells. Virology, 346, 385–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Young, L. S., Dawson, C. W., and Eliopoulos, A. G., The expression and function of Epstein-Barr virus encoded latent genes. Mol. Pathol., 53, 238–247 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Kyeong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S.T., Kim, M. & Lee, S.K. Maintenance of the viral episome is essential for the cell survival of an Epstein-Barr virus positive gastric carcinoma cell line. Arch. Pharm. Res. 32, 729–736 (2009). https://doi.org/10.1007/s12272-009-1512-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-009-1512-7

Key words

Navigation