Skip to main content
Log in

Pharmacokinetics of (−)-epicatechin in rabbits

  • Research Article
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the pharmacokinetics of (−)-epicatechin (EC) in rabbits after intravenous, intraperitoneal, and oral administration. A two-compartment model was used to describe the pharmacokinetics of EC after intravenous administration. EC showed dose-independent pharmacokinetics after intravenous administration. In addition, the area under the concentration-time curve was proportional to the dose over the range 5–25 mg/kg. After intraperitoneal administration of 25 mg/kg, a high percentage of EC escaped from first-pass hepatic elimination. After oral administration of 50 mg/kg, there was a great variation in the pharmacokinetics, and the mean oral bioavailability of EC was 4%. There was no significant difference in the elimination rate constants in all treatments (p>0.05). In conclusion, after intravenous, intraperitoneal, and oral administration of EC, the EC exhibits dose-independent pharmacokinetics in rabbits. The first-pass effect did not participate in the low oral bioavailability. Base on the results of the present study, the other factors may contribute the low oral bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balentine, D. A., Wiseman, S. A., and Bouwens, L. C. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr., 37, 693–704 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Cai, Y., Anavy, N. D., and Chow, H. H. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab. Dispos., 30, 1246–1249 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Catterall, F., King, L. J., Clifford, M. N., and Ioannides, C. Bioavailability of dietary doses of 3H-labelled tea antioxidants (+)-catechin and (−)-epicatechin in rat. Xenobiotica, 33, 743–753 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Chan, K. Y., Zhang, L., and Zuo, Z. Intestinal efflux transport kinetics of green tea catechins in Caco-2 monolayer model. J. Pharm. Pharmacol., 59, 395–400 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Chang, Q., Zuo, Z., Ho, W. K., and Chow, M. S. Comparison of the pharmacokinetics of hawthorn phenolics in extract versus individual pure compound. J. Clin. Pharmacol., 45, 106–112 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Lee, M. J., Li, H., and Yang, C. S. Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab. Dispos., 25, 1045–1050 (1997).

    PubMed  CAS  Google Scholar 

  • Da Silva, E. L., Piskula, M., and Terao, J. Enhancement of antioxidative ability of rat plasma by oral administration of (−)-epicatechin. Free Radic. Biol. Med., 24, 1209–1216 (1998).

    Article  PubMed  Google Scholar 

  • Donovan, J. L., Crespy, V., Manach, C., Morand, C., Besson, C., Scalbert, A., and Rémésy, C. Catechin is metabolized by both the small intestine and liver of rats. J. Nutr., 131, 1753–1757 (2001).

    PubMed  CAS  Google Scholar 

  • Engler, M. B., Engler, M. M., Chen, C. Y., Malloy, M. J., Browne, A., Chiu, E. Y., Kwak, H. K., Milbury, P., Paul, S. M., Blumberg, J., and Mietus-Snyder, M. L. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J. Am. Coll. Nutr., 23, 197–204 (2004).

    PubMed  CAS  Google Scholar 

  • Heo, H. J. and Lee, C. Y. Epicatechin and catechin in cocoa inhibit amyloid beta protein induced apoptosis. J. Agric. Food Chem., 53, 1445–1448 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Heptinstall, S., May, J., Fox, S., Kwik-Uribe, C., and Zhao, L. Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults. J. Cardiovasc. Pharmacol., 47Suppl 2, S197–S205 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A., Nedeljkovic, S., Pekkarine, M., Simic, B. S., Toshima, H., Feskens, E. J., Hollman, P. C., and Katan, M. B. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med., 155, 381–386 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Higdon, J. V. and Frei, B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr., 43, 89–143 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ho, Y., Lee, Y. L., and Hsu, K. Y. Determination of (+)-catechin in plasma by high-performance liquid chromatography using fluorescence detection. J. Chromatogr. B. Biomed. Appl., 665, 383–389 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kohri, T., Suzuki, M., and Nanjo, F. Identification of metabolites of (−)-epicatechin gallate and their metabolic fate in the rat. J. Agric. Food Chem., 51, 5561–5566 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kuhnle, G., Spencer, J. P., Schroeter, H., Shenoy, B., Debnam, E. S., Srai, S. K., Rice-Evans, C., and Hahn, U. Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem. Biophys. Res. Commun., 277, 507–512 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. Y. Pharmacokinetics study of (+)-Catechin in rabbits., Master thesis of Taipei Medical University. (1994).

  • Mandel, S. and Youdim, M. B. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic. Biol. Med., 37, 304–317 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Meselhy, M. R., Nakamura, N., and Hattori, M. Biotransformation of (−)-epicatechin 3-O-gallate by human intestinal bacteria. Chem. Pharm. Bull. (Tokyo), 45, 888–893 (1997).

    CAS  Google Scholar 

  • Osakabe, N., Baba, S., Yasuda, A., Iwamoto, T., Kamiyama, M., Tokunaga, T., and Kondo, K., Dose-response study of daily cocoa intake on the oxidative susceptibility of lowdensity lipoprotein in healthy human volunteers. J. Health Sci., 50, 679–684 (2004).

    Article  CAS  Google Scholar 

  • Prior, R. L. and Cao, G. Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proc. Soc. Exp. Biol. Med., 220, 255–261 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Steffen, Y., Schewe, T., and Sies, H. Epicatechin protects endothelial cells against oxidized LDL and maintains NO synthase. Biochem. Biophys. Res. Commun., 331, 1277–1283 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Takizawa, Y., Morota, T., Takeda, S., and Aburada, M. Pharmacokinetics of (−)-epicatechin-3-O-gallate, an active component of Onpi-to, in rats. Biol. Pharm. Bull., 26, 608–612 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan, J. B. and Walle, T. Transport and metabolism of the tea flavonoid (−)-epicatechin by the human intestinal cell line Caco-2. Pharm. Res., 18, 1420–1425 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wan, Y., Vinson, J. A., Etherton, T. D., Proch, J., Lazarus, S. A., and Kris-Etherton, P. M. Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am. J. Clin. Nutr., 74, 596–602 (2001).

    PubMed  CAS  Google Scholar 

  • Wang, E. J., Barecki-Roach, M., and Johnson, W. W. Elevation of P-glycoprotein function by a catechin in green tea. Biochem. Biophys. Res. Commun., 297, 412–418 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Xu, J. Z., Yeung, S. Y., Chang, Q., Huang, Y., and Chen, Z. Y. Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br. J. Nutr., 91, 873–881 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Yoshino, K., Suzuki, M., Sasaki, K., Miyase, T., and Sano, M. Formation of antioxidants from (−)-epigallocatechin gallate in mild alkaline fluids, such as authentic intestinal juice and mouse plasma. J. Nutr. Biochem., 10, 223–229 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zheng, Y., Chow, M. S., and Zuo, Z. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. Int. J. Pharm., 287, 1–12 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Zhu, M., Chen, Y., and Li, R. C. Oral absorption and bioavailability of tea catechins. Planta Med., 66, 444–447 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Zhu, M., Chen, Y., and Li, R. C. Pharmacokinetics and system linearity of tea catechins in rat. Xenobiotica., 31, 51–60 (2001). http://www.hsus.org.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuang-Yang Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YA., Hsu, KY. Pharmacokinetics of (−)-epicatechin in rabbits. Arch. Pharm. Res. 32, 149–154 (2009). https://doi.org/10.1007/s12272-009-1129-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-009-1129-x

Key words

Navigation