Archives of Pharmacal Research

, Volume 31, Issue 12, pp 1590–1596 | Cite as

Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma

  • Ok-Kyoung Kwon
  • Kyung-Seop Ahn
  • Mee-Young Lee
  • So-Young Kim
  • Bo-Young Park
  • Mi-Kyoung Kim
  • In-Young Lee
  • Sei-Ryang Oh
  • Hyeong-Kyu Lee
Research Article Drug Efficacy and Safety

Abstract

Kefiran is a major component of kefir which is a microbial symbiont mixture that produces jelly-like grains. This study aimed to evaluate the therapeutic availability of kefiran on the ovalbumin-induced asthma mouse model in which airway inflammation and airway hyper-responsiveness were found in the lung. BALB/c mice sensitized and challenged to ovalbumin were treated intra-gastrically with kefiran 1 hour before the ovalbumin challenge. Kefiran significantly suppressed ovalbumin-induced airway hyper-responsiveness (AHR) to inhaled methacholine. Administration of kefiran significantly inhibited the release of both eosinophils and other inflammatory cells into bronchoalveolar lavage (BAL) fluid and lung tissue which was measured by Diff-Quik. Interleukin-4 (IL-4) and interleukin-5 (IL-5) were also reduced to normal levels after administration of kefiran in BAL fluid. Histological studies demonstrate that kefiran substantially inhibited ovalbumin-induced eosinophilia in lung tissue by H&E staining and goblet cell hyperplasia in the airway by PAS staining. Taken above data, kefiran may be useful for the treatment of inflammation of lung tissue and airway hyper-responsiveness in a murine model and may have therapeutic potential for the treatment of allergic bronchial asthma.

Key words

Kefiran Asthma Inflammation Airway hyper-responsiveness Mucus Ovalbumin-induced murine model 

Abbreviations

OVA

ovalbumin

BALF

broncho-alveolar lavage fluid

AHR

airway hyper-responsiveness

H&E

hematoxylin and eosin

PAS

Periodic acid-Schiff

Dex

Dexamethasone

PBS

phosphate buffered saline

ipNeb

intra-peritoneal administration and nebulization

Th2

type 2 helper T cell

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bochner, B. S., Undem, B. J., and Lichtenstein, L. M., Immunological aspects of allergic asthma. Ann. Rev. Immuno., 12, 295–335 (1994).CrossRefGoogle Scholar
  2. Bousquet, J., Chanez, P., Lacoste, J. Y., Barnéon, G., Ghavanian, N., Enander, I., Venge, P., Ahlstedt, S., Simony-Lafontaine, J., Godard, P. et al., Eosinophilic inflammation in asthma. N. Engl. J. Med., 323, 1033–1039 (1990).PubMedGoogle Scholar
  3. Brusselle, G. G., Kips, J. C., Tavernier, J. H., van der Heyden, J. G., Cuvelier, C. A., Pauwels, R. A., and Bluethmann, H., Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin. Exp. Allergy, 24, 73–80 (1994).PubMedCrossRefGoogle Scholar
  4. Cobb, B. A. and Kasper, D. L., Coming of age: carbohydrates and immunity. Eur. J. Immunol., 35, 352–356 (2005).PubMedCrossRefGoogle Scholar
  5. Cohn, L., Homer, R. J., Marinov, A., Rankin, J., and Bottomly, K., Induction of airway mucus production By T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J. Exp. Med., 186, 1737–1747 (1997).PubMedCrossRefGoogle Scholar
  6. Daigle, I. and Simon, H. U., Alternative functions for TRAIL receptors in eosinophils and neutrophils. Swiss Med. Wkly., 131, 231–237 (2001).PubMedGoogle Scholar
  7. Djukanovic, R., Roche, W. R., Wilson, J. W., Beasley, C. R., Twentyman, O. P., Howarth, R. H., and Holgate, S. T., Mucosal inflammation in asthma. Am. Rev. Respir. Dis., 142, 434–457 (1990).PubMedGoogle Scholar
  8. Farnworth, E. R. and Mainville, I., eds, Kefir: a fermented milk product. Handbook of Fermented Functional Foods. CRC Press, 77–112 (2003).Google Scholar
  9. Gonzalo, J. A., Lloyd, C. M., Kremer, L., Finger, E., Martinez-A, C., Siegelman, M. H., Cybulsky, M., and Gutierrez-Ramos, J. C., Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors. J. Clin. Invest., 98, 2332–2345 (1996).PubMedCrossRefGoogle Scholar
  10. Hamelmann, E., Schwarze, J., Takeda, K., Oshiba, A., Larsen, G. L., Irvin, C. G., and Gelfand, E. W., Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit. Care Med., 156, 766–775 (1997).PubMedGoogle Scholar
  11. Hogan, S. P., Mould, A., Kikutani, H., Ramsay, A. J., and Foster, P. S., Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J. Clin. Invest., 99, 1329–1339 (1997).PubMedCrossRefGoogle Scholar
  12. Holgate, S. T., Peters-Golden, M., Panettieri, R. A., and Henderson, W. R. Jr., Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J. Allergy Clin. Immunol., 111, S18–34; discussion S34–36 (2003).PubMedCrossRefGoogle Scholar
  13. Hoshino, M., Nakamura, Y., Sim, J., Shimojo, J., and Isogai, S., Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J. Allergy Clin. Immunol., 102, 783–788 (1998).PubMedCrossRefGoogle Scholar
  14. Kon, O. M., Sihra, B. S., Compton, C. H., Leonard, T. B., Kay, A. B., and Barnes, N. C., Randomised, dose-ranging, placebo-controlled study of chimeric antibody to CD4 (keliximab) in chronic severe asthma. Lancet, 352, 1109–1113 (1998).PubMedCrossRefGoogle Scholar
  15. Kumar, R. K. and Foster, P. S., Modeling allergic asthma in mice: pitfalls and opportunities. Am. J. Respir. Cell Mol. Biol., 27, 267–272 (2002).PubMedGoogle Scholar
  16. Jeffery, P. and Zhu, J., Mucin-producing elements and inflammatory cells. Novartis Found Symp., 248, 51–68; discussion 68–75, 277–282 (2002).PubMedCrossRefGoogle Scholar
  17. La Riviere, J. W. and Kooiman, P., Kefiran, a novel polysaccharide produced in the kefir grain by Lactobacillus brevis. Arch. Microbiol., 59, 269–278 (1967).Google Scholar
  18. Lee, J. J., McGarry, M. P., Farmer, S. C., Denzler, K. L., Larson, K. A., Carrigan, P. E., Brenneise, I. E., Horton, M. A., Haczku, A., Gelfand, E. W., Leikauf, G. D., and Lee, N. A., Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J. Exp. Med., 185, 2143–2156 (1997).PubMedCrossRefGoogle Scholar
  19. Lee, M. Y., Ahn, K. S., Kwon, O. K., Kim, M. J., Kim, M. K., Lee, I. Y., Oh, S. R., and Lee, H. K., Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. Immunobiology., 212, 647–654 (2007).PubMedCrossRefGoogle Scholar
  20. Nakajima, H., Iwamoto, I., Tomoe, S., Matsumura, R., Tomioka, H., Takatsu, K., and Yoshida, S., CD4+ T-lymphocytes and interleukin-5 mediate antigen-induced eosinophil infiltration into the murine trachea. Am. Rev. Respir. Dis., 146, 374–377 (1992).PubMedGoogle Scholar
  21. Nakata, J., Kondo, M., Tamaoki, J., Takemiya, T., Nohara, M., Yamagata, K., and Nagai, A., Augmentation of allergic inflammation in the airways of cyclooxygenase-2-deficient mice. Respirology, 10, 149–156 (2005)PubMedCrossRefGoogle Scholar
  22. Micheli, L., Uccelletti, D., Palleschi, C., and Crescenzi, V., Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Appl. Microbiol. Biotechnol., 53, 69–74 (1999)PubMedCrossRefGoogle Scholar
  23. Rankin, J. A., Picarella, D. E., Geba, G. P., Temann, U. A., Prasad, B., DiCosmo, B., Tarallo, A., Stripp, B., Whitsett, J., and Flavell, R. A., Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc. Natl. Acad. Sci. U S A, 93, 7821–7825 (1996).PubMedCrossRefGoogle Scholar
  24. Robinson, D. S., Hamid, Q., Ying, S., Tsicopoulos, A., Barkans, J., Bentley, A. M., Corrigan, C., Durham, S. R., and Kay, A. B., Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med., 326, 298–304 (1992).PubMedGoogle Scholar
  25. Robinson, D. S., Durham, S. R., and Kay, A. B., Cytokines. 3. Cytokines in asthma. Thorax, 48, 845–853 (1993).PubMedCrossRefGoogle Scholar
  26. Rogers, L., Cassino, C., Berger, K. I., Goldring, R. M., Norman, R. G., Klugh, T., and Reibman, J., Asthma in the elderly: cockroach sensitization and severity of airway obstruction in elderly nonsmokers. Chest, 122, 1580–1586 (2002).PubMedCrossRefGoogle Scholar
  27. Saloff-Coaste, C., Kefir, Danonne Newsletter, 1–11 (1996).Google Scholar
  28. Sampson, A. P., The leukotrienes: mediators of chronic inflammation in asthma. Clin. Exp. Allergy, 26, 995–1004 (1996).PubMedCrossRefGoogle Scholar
  29. Vinderola, C. G., Medici, M., and Perdigón, G., Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein profiles in indigenous and exogenous bacteria. J. Appl. Microbiol., 96, 230–243 (2004).PubMedCrossRefGoogle Scholar
  30. Vinderola, C. G., Duarte, J., Thangavel, D., Perdigón, G., Farnworth, E., and Matar, C., Immunomodulating capacity of kefir. J. Dairy Res., 72, 195–202 (2005).PubMedCrossRefGoogle Scholar
  31. Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E., and Matar, C., Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36, 254–260 (2006).PubMedCrossRefGoogle Scholar
  32. Walker, C., Kaegi, M. K., Braun, P., and blasér, K., Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J. Allergy Clin. Immunol., 88, 935–942 (1991).PubMedCrossRefGoogle Scholar
  33. Wardlaw, A. J., Molecular basis for selective eosinophil trafficking in asthma: A multistep paradigm. J. Allergy Clin. Immunol., 104, 917–926 (1999).PubMedCrossRefGoogle Scholar
  34. Wood, L. G., Gibson, P. G., and Garg, M. L., Biomarkers of lipid peroxidation, airway inflammation and asthma. Eur. Respir. J., 21, 177–186 (2003)PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Ok-Kyoung Kwon
    • 1
  • Kyung-Seop Ahn
    • 1
  • Mee-Young Lee
    • 1
  • So-Young Kim
    • 1
  • Bo-Young Park
    • 1
  • Mi-Kyoung Kim
    • 2
    • 1
  • In-Young Lee
    • 2
    • 1
  • Sei-Ryang Oh
    • 1
  • Hyeong-Kyu Lee
    • 1
  1. 1.Natural Medicine Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  2. 2.DMJ Biotech Co.YeongiKorea

Personalised recommendations