Skip to main content
Log in

Neuroprotective effect of benzylideneacetophenone derivative on the MPTP model of neurodegeneration in mice

  • Research Articles
  • Drug Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the neuroprotective effect of a benzylideneacetophenone derivative, JC3, in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD). C57BL/6 mice were treated with MPTP (30 mg/kg, i.p.) for 5 consecutive days. JC3 (10 mg/kg, i.p.) treatment was initiated 2 h after the first administration of MPTP and then at 24-h intervals for 3 consecutive days. The mice were sacrificed for analyses 7 days after the last MPTP injection. Immunohistochemistry and Western blot were used to determine the expression levels of tyrosine hydroxylase (TH), dopamine transporter (DAT), OX-42 (a marker of microglial activation), and glial fibrillary acid protein (GFAP, a marker of astrocyte activation) in the substantia nigra (SN) and striatum (ST). The results of these experiments demonstrated that JC3 restored the decreased TH-immunoreactivity (IR) and DAT and JC3 attenuated the increase in OX-42, GFAP, and COX-2 on the SN and ST on day 7 post-MPTP injection. These results suggest that JC3 can be a neuroprotective agent in an MPTP-induced model of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloisi, F., The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv. Exp. Med. Biol., 468, 123–133 (1999).

    PubMed  CAS  Google Scholar 

  • Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L., Sadoul, R., and Verna, J. M., Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol., 65, 135–172 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Castano, A., Herrera, A. J., Cano, J., and Machado, A., The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J. Neurochem., 81, 150–157 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. and Swanson, R. A., Astrocytes and brain injury. J. Cereb. Blood Flow Metab., 23, 137–149 (2003).

    Article  PubMed  Google Scholar 

  • Ciliax, B. J., Drash, G. W., Staley, J. K., Haber, S., Mobley, C. J., Miller, G. W., Mufson, E. J., Mash, D. C., and Levey, A. I., Immunocytochemical localization of the dopamine transpoter in human brain. J. Comp. Neurol., 409, 38–56 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Dai, Y. Q., Jin, D. Z., Zhu, X. Z., and Lei, D. L., Triptolide inhibits COX-2 expression via NF-kappa B pathway in astrocytes. Neurosci. Res., 55, 154–160 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Dehmer, T., Lindenau, J., Haid, S., Dichgans, J., and Schulz, J. B., Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J. Neurochem., 74, 2213–2216 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Dong, Y. and Benveniste, E. N., Immune function of astrocytes. Glia, 36, 180–190 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Herdegan, T., Fischer, G., and Bold, B. G., Immunophilin ligands as a novel treatment of neurological disorders. Trends Pharmacol. Sci., 21, 3–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann, J., Matsumoto, Y., and Kreutzberg, G. W., Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev., 20, 269–287 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Giovannini, M. G., Scali, C., Prosperi, C., Bellucci, A., Vannucchi, M. G., Rosi, S., Pepeu, G., and Casamenti, F., Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol. Dis., 11, 257–274 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Fahn, S. and Cohen, G., The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann. Neurol., 32, 804–812 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Ferger, B., Leng, A., Mura, A., Hengerer, B., and Feldon, J., Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem., 89, 822–833 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Geng, X., Tian, X., Tu, P., and Pu, X., Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson’s disease. Eur. J. Pharmacol., 564, 66–74 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, M. and Riederer, P., Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J. Neural. Transm., 103, 987–1041 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Heikkila, R. E., Sieber, B. A., Manzino, L., and Sonsalla, P. K., Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol. Chem. Neuropathol., 10, 171–183 (1989).

    PubMed  CAS  Google Scholar 

  • Hayley, S., Crocker, S. J., Smith, P. D., Shree, T., Jackson-Lewis, V., Przedborski, S., Mount, M., Slack, R., Anisman, H., and Park, D. S., Regulation of dopaminergic loss by Fas in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J. Neurosci., 24, 2045–2053 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E. C., Graybiel, A. M., and Agid, Y. A., Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature, 334, 345–348 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E. C., Hunot, S., Damier, P., and Faucheux, B., Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann. Neurol., 44, S115–S120 (1998).

    PubMed  CAS  Google Scholar 

  • Hunot, S. and Hirsch, E. C., Neuroinflammatory processes in Parkinson’s disease. Ann. Neurol., 53,Suppl 3:S49–58; discussion S58–60 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. and Olanow, C. W., Understanding cell death in Parkinson’s disease. Ann. Neurol., 44, S72–84 (1998).

    PubMed  CAS  Google Scholar 

  • Kang, J. M., Park, H. J., Choi, Y. G., Choe, I. H., Park, J. H., Kim, Y. S., and Lim, S., Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res., 1131, 211–219 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, Y., Itano, Y., Kubo, T., and Nomura, Y., Suppressive effect of FK-506, a novel immunosuppressant, against MPTP-induced dopamine depletion in the striatum of young C57BL/6 mice. J. Neuroimmunol., 50, 221–224 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J, S., Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci., 20, 6309–6316 (2000).

    PubMed  CAS  Google Scholar 

  • Kohutnicka, M., Lewandowska, E., Kurkowska-Jastrzebska, I., Czlonkowski, A., and Czlonkoeska, A., Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology, 39, 167–180 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki, R., Muramatsu, Y., Kato, H., and Araki, T., Biochemical, behavioral and immunohistochemistry alterations in MPTP-treated mouse model of Parkinson’s disease. Pharmacol. Biochem. Behav., 78, 143–153 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kurkowska-Jastrzebska, I., Wronska, A., Kohutnicka, M., Czlonkowski, A., and Czlonkowska, A., The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp. Neurol., 156, 50–61 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Langston, J. W., Ballard, P., Tetrud, J. W., and Irwin, I., Chronic Parkinsonism in humans due to a product of meperidineanalog synthesis. Science, 219, 979–980 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Liberatore, G. T., Jackson-Lewis, V., Vukosavic, S., Mandir, A.S., Vila, M., McAuliffe, W. G., Dawson, V. L., Dawson, T. M., and Przedborski, S., Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med., 5, 1403–1409 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., Du, L., and Hong, J. S., Naloxone protects rat dopaminergic neuros against inflammatory damage through inhibition of microglia activation and superoxide generation. J. Pharmacol. Exp. Ther., 293, 607–617 (2000).

    PubMed  CAS  Google Scholar 

  • Matsuura, K., Makino, H., and Ogawa, N., Cyclosporin A attenuates the decrease in tyrosine hydroxylase immunoreactivity in nigrostriatal dopaminergic neurons and in striatal dopamine content in rats with intrastriatal injection of 6-hydroxydopamine. Exp. Neurol., 146, 526–535 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Oh, S., Jang, S., Kim, D., Han, I. O., and Jung, J. C., Synthesis and evaluation of biological properties of benzylideneacetophenone derivatives. Arch. Pharm. Res., 29, 469–475 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H., Sabatini, D. M., Lai, M. M., Steiner, J. P., Hamilton, G. S., and Suzdak, P. D., Neural actions of immunophilin ligands. Trends Pharmacol. Sci., 19, 21–26 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Streit, W. J., Graeber, M. B., and Kreutzberg, G. W., Functional plasticity of microglia: a review. Glia, 1, 301–307 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Tanji, H., Araki, T., Nagasawa, H., and Itoyama, Y., Differential vulnerability of dopamine receptors in the mouse brain treated with MPTP. Brain. Res., 824, 224–231 (1998).

    Article  Google Scholar 

  • Tipton, K. F. and Singer, T. P., Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J. Neurochem., 61, 1191–1206 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Turski, L., Bressler, K., Rettig, K. J., Loschmann, P. A., and Wachtel, H., Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature, 349, 414–418 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Tzeng, S. F., Hsiao, H. Y., and Mak, O. T., Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr Drug Targets Inflamm. Allergy, 4, 335–340 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Viale, G., Gambacorta, M., Coggi, G., Dell’Orto, P., Milani, M., and Doglioni, C., Glial fibrillary acidic protein immunoreactivity in normal and diseased human breast. Pathol. Anat. Histopathol., 418, 339–348 (1991).

    Article  CAS  Google Scholar 

  • Vijitruth, R., Liu, M., Choi, D. Y., Nguyen, X. V., Hunter, R. L., and Bing, G., Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J. Neuroinflammation, 3, 6 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q. W., and Nathan, C., Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J. Exp. Med., 178, 605–613 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Wang, T., Pei, Z., Zhang, W., Liu, B., Langenbach, R., Lee, C., Wilson, B., Reece, J. M., Miller, D, S., and Hong, J. S., MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB J., 19, 1134–1136 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Wu, D. C., Jackson-Lewis, V., Tieu, K., Tesimann, P., Vadseth, C., Choi, D. K., Ischiropoulos, H., and Przedborski, S., Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J. Neurosci., 22, 1763–1771 (2002).

    PubMed  CAS  Google Scholar 

  • Zuddas, A., Fascetti, F., Corsini, G. U., and Piccardi, M. P., In brown Norway rats, MPP+ is accumulated in the nigrostriatal dopaminergic terminals but it is not neurotoxic: a model of natural resistance to MPTP toxicity. Exp. Neurol., 127, 54–61 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seikwan Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J.M., Jung, JC., Kim, H. et al. Neuroprotective effect of benzylideneacetophenone derivative on the MPTP model of neurodegeneration in mice. Arch. Pharm. Res. 31, 1098–1107 (2008). https://doi.org/10.1007/s12272-001-1275-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-001-1275-5

Key words

Navigation